
September 1992 UILU-ENG-92-2237

CRHC-92-19

%, . .

Center for Reliable and High-Performance Computing

9

AUTOMATIC DATA
PARTITIONING ON

DISTRIBUTED MEMORY
MULTICOMPUTERS

Manish Gupta

(NASA-CR-190976) AUTOMATIC DATA

PARTITIqNING ON DISTRI_UTPO MEMORY

MULTICOMPUTFRS Ph.D. Thesis

(I|Iinois Univ.) 152 p

G3/62

N93-I1651

Unclas

0127119

Coordinated Science Laboratory

College of Engineering

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ApprovedforPublicRelease.DislributionUnlimited,

QCopyright by Manish Gupta, 1992

AUTOMATIC DATA PARTITIONING ON
DISTRIBUTED MEMORY MULTICOMPUTERS

BY

MANISH GUPTA

B.Tech., Indian Institute of Technology, Delhi, 1987
M.S., Ohio State University, 1988

THESIS

Submitted in partialfulfillmentof the requirements
forthe degreeof Doctor of Philosophyin Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1992

Urbana, Illinois

I !

II

AUTOMATIC DATA PARTITIONINGON

DISTRIBUTED MEMORYMULTICOMPUTERS

ManishGupta,Ph.D.
Departmentof ComputerScience,

Universityof Illinois at Urbane-Champaign, 1992

Prithviraj Banerjee, Advisor

Distributed-memory parallel computers are increasingly being used to provide high levels

of performance for scientific applications. Unfortunately, such machines are not very easy to

program. A number of research efforts seek to alleviate this problem by developing compilers

that take over the task of generating communication. The communication overheads and the

extent of parallelism exploited in the resulting target program are determined largely by the

manner in which data is partitioned across different processors of the machine. Most of the

compilers provide no assistance to the programmer in the crucial task of determining a good

data partitioning scheme.

This thesis presents a novel approach, the constraint-based approach, to the problem of

automatic data partitioning for numeric programs. In this approach, the compiler identifies

some desirable requirements on the distribution of various arrays being referenced in each

statement, based on performance considerations. These desirable requirements are referred to

as constraints. For each constraint, the compiler determines a quality measure that captures its

importance with respect to the performance of the program. The quality measure is obtained

through static performance estimation, without actually generating the target data-parallel

program with explicit communication. Each data distribution decision is taken by combining

all the relevant constraints. The compiler attempts to resolve any conflicts between constraints

such that the overall execution time of the parallel program is minimized.

..o

Ul

This approach has been implemented as part of a compiler called PAKADIGM, that accepts

Fortran 77 programs, and specifies the partitioning scheme to be used for each array in the

program. We have obtained results on some programs taken from the Linpack and Eispack

libraries, and the Perfect Benchmarks. These results are quite promising, and demonstrate the

feasibility of automatic data partitioning for a significant class of scientific application programs

with regular computations.

iv

To my parents

A CKN OWLED G EMENT S

I would like to thank my advisor, Professor Prithviraj Banerjee, for his advice, support, and

constant encouragement during the course of my research. Working with him has been a

learning experience and a great pleasure for me. I would also like to thank the members of

my committee, Professors Lazcmikant Kale, David Padua, Andrew Chien and Wen-Mei Hwu,

for their valuable comments and suggestions on my work. Further thanks are due to Vas

Balasundaram and Jeanne Ferrante for the technical discussions during my summer work at

IBM, that considerably influenced my research.

Professor Constantine Polychronopoulos and his entire team of students working on the

Parafrase-2 project deserve a special thanks for making that system available to us. In paxticu-

lax, I wish to thank Mohammad Haghighat, not only for doing a fine job with symbolic analysis

in Parafrase-2, but also for his help with my queries about the system.

My numerous friends at Urbana made my stay at this town very pleasant and comfortable.

I could not have anticipated how much I would enjoy these years, when I first came here to

pursue graduate studies. A special note of thanks goes to all my friends.

My sister, Aarti, has always inspired me through her achievements in academic and non-

academic activities, and has been an unfailing source of help and advice. I would like to thank

her for all her guidance and affection. I also wish to thank Shaxad for his help on numerous

occasions.

I cannot possibly expresss in words my gratitude towards my parents for their love, support,

and the sacrifices they have made for me. I consider myself extremely fortunate to have such

wonderful parents. It is to them that I dedicate this thesis.

vi

TABLE OF CONTENTS

CHAPTER

I INTRODUCTION
i

I.i Distributed-Memory ParallelComputers 2

1.2 Emerging Trend in Programming Support 2

1.3 Motivation forAutomatic Data Partitioning.................... 4

1.4 Research Goals 6

AUTOMATIC DATA PARTITIONING

2.1

2.2

2.3

9

Data Distribution 9

Constraint-Based Approach 13

2.2.1 Significance of Constraints 13

2.2.2 Conflicts among Constraints 15

2.2.3 Overview cf the System 16

Related Work 18

3 ESTIMATION OF COMPUTATIONAL COSTS

3.1

3.2

3.3

22

Program Information 23

Computational Cost for a Statement 29

3.2.1 Identification cf Loop Level Parallelism 29

3.2.2 Contribution of Each Loop to Computational Cost 30

Detection of Overlap 34

3.3.1 Case 1: OneToMany dependence 34

3.3.2 Case 2: Constant dependence 35

ESTIMATION OF COMMUNICATION COSTS 37

4.1 Communication Primitives 38

4.2 Characterization of Array References 39

4.2.1 Definitions 41

4.2.2 Static Determination cf Characteristics 43

4.3 Placement cf Communication 49

4.3.1 Moving Communication Outside Loops 49

4.3.2 Limits on Combining of Messages 53

4.4 Identification cf Communication Terms 55

vii

5

4.5

4.4.1 Overviewof Algorithm 56
4.4.2 Data Movement in Type-2 Loops 58

4.4.3 Data Movement in Type-1 Loops 59

Composition of Communication Terms 69

4.5.1 Communication Terms with Same Primitive 69

4.5.2 Ordering cf Primitives 69

4.5.3 Number cf Repetitions 72

DATA DISTRIBUTION PASSES 77

5.1 Alignment of Array Dimensions 79

5.1.1 Detecticn cf Constraints 79

5.1.2 Determination of Quality Measure 81

5.1.3 Determination of Distribution Parameter 85

5.2 Method cf Paxtitioni_g: Blocked/Cyclic 86

5.2.1 Detection of Constraints 87

5.2.2 Determination of Quality Measures 89

5.2.3 Determination of Distribution Parameter 91

5.3 Block Sizes cf Distributions • 92

5.3.1 Detection of Constraints 93

5.3.2 Determination of Quality Measures 93

5.3.3 Determination of Distribution Parameter 95

5.4 Number of Processors in Mesh Dimensions 97

5.4.1 Recording of Constraints and Quality Measures 98

5.4.2 Determination of Distribution Parameter 99

EXPERIMENTAL RESULTS 102

6.1 Methodology 103

6.1.1

6.1.2

6.2 Data

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

Application Programs 104

Machine-Specific Information 104

Partitioning Schemes 106

Application 1:TRED2 106

Application 2: JACOBI 110

Application 3: DGEFA 112

Application 4: OLDA 113

Application 5A- DFLUX 115

VII"1""

6.2.6 Application 5B: EFLUX 116

6.3 Performance Results 116

6.3.1 Application 1:TRED2 117

6.3.2 Application 2: JACOBI 119

6.3.3 Application 3: OLDA 120

CONCLUSIONS 122

7.1 Contributions 122

7.2 Future Directions 124

BIBLIOGRAPHY .. 127

APPENDIX

BENCHMARK PROGRAMS 135

1.1 DGEFA .. 135

1.2 OLDA ... 137

1.3 DFLUX .. 140

1.4 EFLUX ... 144

VITA ... 147

ix

LIST OF TABLES

4.1 Cost complexitiesof communication primitiveson the hypercube architecture 41

4.2 Communication terms fora pairofsub-referencesvaryingin a type-iloop . . . 60

4.3 Communication terms fortwo pairsofsub-referencesvaryingin a type-Iloop 62

4.4 Collectivecommunication for sub-referencesinvolvingunknowns 68

4.5 Combining of terms with identicalcommunication primitives........... 69

4.6 Ordering of communication primitivesforcomposition 71

6.1 Costs of collective communication primitives on the iPSC/2 105

6.2 Distribution functions for arrays in d.flux 115

6.3 Performance of different versions of Jacobi on iPSC/2 120

LIST OF FIGURES

2.1 Differentdata partitionsfora 16 • 16 array 12

2.2 Program segment from trfd 14

2.3 Overview of automatic data partitioningin PARADIGM 17

3.1 Assignment statement with arrayreferences 27

3.2 Variation.of innerloop bounds with outer loop index 28

3.3 Algorithm to determine looplevelparallelismfor S 30

3.4 Region of Ak accessedin loop Ll 33

3.5 Variationof multiplesubscriptsin the same loop 34

3.6 Statement with onetomany dependence 35

3.7 Overlap of computations in caseof constantdependence 36

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

Communication primitivesrecognizedby PARADIGM 40

Example program segment 42

Statement requiringcommunication of data 49

Algorithm to determine communication levelforreferenceto B in S 50

Originalprogram segment 51

Dependence graph for the example program segment 51

Transformed program segment 52

Statement involvingcommunication 53

Combining of messages versus exploitation of pipeline parallelism 54

Statement with irregular data movement 54

Different data movements in the two mesh dimensions 56

Data movements for sub-references of the type single-£ndex 61

Variation of multiple pairs of sub-references in a loop 64

Choice of D-Scatter term for the given example 64

Choice of D-Gather term for the given example 64

Example to illustrate tiling of outer loop 67

Statement requiring Gather and Transfer in different dimensions 70

Possible compositions of Gather and Transfer 71

Example of composition of communication terms 72

Example to illustrate pipelining 75

5.1 Structure of a data distribution pass 78

xi

5.2

5.3

5.4
5.5

5.6

5.7
5.8
5.9

5.10
5.11
5.12

5.13

Referencessuggestingalignmentconstraints 80

Multiple candidates for alignment 81

Identification of primary and secondary pairs 82

The two alignment configurations to obtain quality measures 82

Identification of the secondary pair of dimensions 83

Need for blocked distribution 87

Need for cyclic distribution 88

References suggesting constraint for blocked distribution 89

Reference suggesting constraint for cyclic distribution 90

References suggesting block-size constraint 94

Conflicts between block-size constraints 97

References to higher-dimensional arrays in parallelizable loops 100

6.1 Source code of tred2 routine 107

6.2 Component Affinity Graph for tred2 108

6.3 Block-size Constraint Graph for tred2 109

6.4 Source code for Jacob£ program 111

6.5 Data movement for updates of array elements in each step in dgefa 113

6.6 Performance of 1;red2 on Intel iPSC/2 for data size n = 512 118

6.7 Performance of _red2 on Intel iPSC/2 for data size n = 256 119

6.8 Performance of o:l.da on Intel iPSC/2 121

xii

CHAPTER 1

INTRODUCTION

Parallel machines are increasingly being used for providing high levels of performance for nu-

merous applications. The technological advances in VLSI circuits have contributed enormously

to the affordability of such machines. There are commercial products available today that in-

terconnect several thousand powerful microprocessors, and are capable of delivering very high

performance. The importance of such computers is bound to grow as the VLSI circuit speeds

driving uniprocessor performance reach their physical limits. It is widely recognized that the

constant demand for increased computational power can only be met by using massively parallel

computers.

Unfortunately, software support for such systems is still lagging far behind the advances in

hardware. In order to exploit the computational power of such machines, the programmer is

currently forced to pay attention to very low-level implementation details. This leads to low

productivity on the programmer's part and lack of portability in the resulting programs. Sev-

eral researchers have proposed to tackle this problem for massively parallel computers through

advanced compiler technology. However, the methodology for compile time analysis still re-

mains insufficiently developed in certain critical areas. As a result, the programmer is still

burdened with tedious tasks that could well be automated. This thesis presents our efforts to

automate what many researchers regard as the most challenging step in parallelizing programs

for massively parallel multicomputers, namely the partitioning of data on distributed memory

machines. We shall now explain more precisely this problem and its significance.

1.1 Distributed-Memory Parallel Computers

Multiprocessor systems are commonly classified into the following two categories: shared-

memory and distributed-memory parallel computers. The shared-memory machines provide

all processors with access to a common global memory. Examples of such machines are the

AUiant FX/2800, the Sequent Balance [74], the Cedar [45], and the IBM R.P3 [19] machines.

On a distributed-memory machine (multicomputer), each processor has direct access to only

a small part of the total memory, which is distributed among processors. Examples of such

systems are the Connection Machine CM-5 [75], the Intel iPSC/860 [36], and the NCUBE/2

[51].

In the context of building massively parallel systems, distributed-memory machines offer

a tremendous advantage in terms of cost and scalabillty. Large shared-memory machines are

much more difficult to build. Unfortunately, distributed-memory machines are relatively harder

to program. One major reason for this difficulty is the absence of a single global address space.

As a result, the programmer has to think about how data should be partitioned among various

processes, and manage communication among the processes explicitly. This communication of

data among processes via message passing is usually quite expensive, forcing the programmer to

pay considerable attention to saving communication costs. Since the performance characteristics

of communication relative to computation vary from one machine to another, the programmer

ends up hard-wiring many machine-specific details into the code. Hence, a great deal of effort

is required to port such programs to new machines.

1.2 Emerging Trend in Programming Support

The last few years have seen considerable research activity towards development of compilers

that alleviate the problem of machine dependence and relieve the programmer of the burden

of explicit message-passing. These compilers take a program written in a sequential or shared-

memory parallel language, and based on user-specified partitioning of data, generate the target

parallel program for a multicomputer. For most compilers, this parallel program corresponds to

2

the SPMD (SingleProgram Multiple Data) model [39],where allprocessorsexecute the same

program, but operateon distinctdata items,thusenablingthe exploitationof data-parallelism

[28].These researcheffortsincludethe Fortran D compiler [30,31],and the SUPERB compiler

[81],both acceptingFortran 77 as the base language. The Crystal compiler [15]and the Id

Nouveau compiler[62]aretargetedforsingleassignment languages.Numerous other compilers,

Dataparallel C [59], C" [63], Kali [43, 44], DINO [64, 65], AL [77], ARF [67], Oxygen [66], Pandore

[4] also produce parallel code for multicomputers, but require explicit parallelism in the source

program. Some of the commercially available compilers for multicomputers are MIMDIZER [69]

and ASPAR [35]. Many researchers assodated with the development of such compilers in the

industry and academia are currently involved in defining High Performance Fortran (HPF), a

new Fortran standard.

Given the data distribution, the basic rule of compilation used by most of the systems de-

scribed above is the owner computes rule [11], according to which it is the processor owning

a data item that has to perform all computations for that item. Any data values required for

the computation that are not available locally have to be obtained via interprocessor commu-

nication. Therefore, with such compilers, one of the most important factors affecting program

performance is the data partitioning scheme. It is the method of data partitioning that guides

the scheduling of computation (and hence determines which of the independent computations

are actually executed on different processors), and determines when interprocessor communi-

cation takes place.

Determining a good partitioning of data across processors is potentially a difficult task that

requires careful examination of numerous considerations. Normally, interprocessor communica-

tion is much more expensive than local computation. Therefore, the data partitioning scheme

should ensure that each processor performs as much of computation as possible using just local

data. Excessive communication among processors can easily offset any gains made by the use

of parallelism. At the same time, the data partitioning scheme should allow the workload to

be distributed evenly among processors, so that full use is made of the parallelism inherent

in the computation. There is often a trade-off between minimizing interprocessor communi-

cation and balancing load on processors, and a good approach must take into account both

the communication and the computational costsgoverned by the underlyingarchitectureofthe

machine.

1.3 Motivation for Automatic Data Partitioning

Most of the compilersfor multicomputers currentlyleave the crucialtask of determining the

data partitioningscheme to the programmer, and do not provide the programmer with any

support in thistask.While we believethat the effortsto developtechniquesforautomating the

generationof communication do representa stepin the rightdirection,we alsofeelthat many

of the fundamental objectivesbehind developingsuch compilersremain incomplete as long as

the programmer isforcedto take decisionson the distributionof data. Some of the advantages

ofmaking the compiler determine data distributionare:

• Reduced burden on the programmer:. The programmer is free to concentrate on the high-

level design of the algorithm. The current state of parallel programming on multicom-

puters is often regarded as comparable to assembly language programming on sequential

machines. Partitioning of data is, in that sense, analogous to register allocation, a task

that should be relegated to the compiler.

• Machine-independence: In general, the best partitioning scheme for a program depends

not only on the program characteristics, but also on numerous machine-specific param-

eters. Thus, a scheme that performs the best on one particular machine may perform

poorly on other machines. Therefore, true portability can only be achieved if the parti-

tioning scheme is not specified as part of the program.

• Relationship with compiler optimizations: A compiler generating the target parallel code

with explicit message-passing applies a number of program transformations, and uses

numerous optimizations that affect the final program performance. A user unfamiliar with

those details may not have a good idea about the implications of some data partitioning

decisions on the performance of the final, compiled code. A compiler would more easily

4

be able to incorporate that information in the process of choosing the data partitioning

scheme.

Let us now examine some of the arguments in favor of letting the programmer control data

partitioning:

• High-level knowledge: The programmer is likely to have an intuition or high-level knowl-

edge about how various data structures are related to each other, and where parallefism

lies in the program. That should enable the programmer to make reasonably good guesses

about the best data distribution scheme.

• Parameters unknown at compile time: Certain parameters such as array sizes and branch-

ing probabilities may be unknown at compile time, even for programs with "regular" com-

putations. That would make it hard for the compiler to estimate program performance

accurately and come up with good data partitioning decisions.

• Unstructured computations: Programs where the data reference patterns themselves are

quite irregular would introduce inaccuracies and make any compile time analysis difficult.

In such cases, the only reasonable option may be to let the programmer distribute data.

We believe that irregular computations, where the compiler is unable to gather precise

information regarding dependences and data referencing behavior, do represent cases where the

compiler is unlikely to come up with good partitioning schemes. However, for a significant class

of regular numeric computations (most compilers described in the previous section are anyway

expected to work well only on such applications), a compiler should be able to handle this

problem well. We believe that for such computations, whatever intuition a good programmer

has about the data structures, does get reflected in the data referencing patterns that can be

analyzed by the compiler. Regarding the parameters that are unknown at compile-time, we

feel that it is better to enhance the capabilities of compiler through techniques like profiling,

symbolic analysis, and through user assertions about those parameters, rather than burdening

the user with the more tedious and error-prone task of data partitioning.

5

1.4 Research Goals

Our primary goal has been to develop a methodology for automatic data partitioning, where

given a sequential or a shared-memory parallel program, the compiler determines how its data

should be distributed on different processors of a multicomputer. The objective is to get the

best performance from the resulting parallel program when it executes on that mnlticomputer.

Our focus in this research has been on scientific application programs. The only data structures

these programs normally use are arrays that have to be partitioned across processors. Usually,

the scalar variables are either replicated on all processors, or there are privatized copies kept

on various processors. We shall concern ourselves mainly with the distribution of arrays.

We have identified some requirements that any compiler-driven approach to data partition-

ing must satisfy in order to be successful. These requirements have served as specific goals in

our research:

• Estimation of program performance: Any strategy for automatic data partitioning needs a

mechanism for comparing different alternatives regarding the data partitioning scheme for

a given program. Therefore, the compiler should have the ability to estimate the perfor-

mance of the target parallel program, given just the source program and data distribution

information. The compiler has to estimate (i) the extent to which data-parallelism can

be exploited, and (ii) the cost of interprocessor communication in the target program.

Clearly, this analysis has to be done before the target program is generated. Thus there

has to be a close link between the determination of data partitioning scheme and the

generation of target data-parallel program with interprocessor communication.

• Heuristics to reduce the search space: For any program with a reasonably large number

of arrays, the search space consisting of different partitioning schemes is enormous. In

fact, many simple versions of the problem of data partitioning have been proved to be

NP-complete [50, 48]. Thus, any approach must employ effective heuristics that lead to

the pruning of a considerable part of the search space.

In addition to satisfying these requirements, our research has been guided by the goals of

incorporating the following desirable characteristics into our approach:

• Machine-independence: There is need for a basic methodology that is machine-independent.

It should then be possible to simply incorporate machine-specific details, and obtain an

automatic data partitioning system for a given machine.

• Intermediate choice points in the eztent of automation: By design, a data partitioning

system should allow a range of possibilities between the two extreme positions of com-

pletely automatic and completely user-specified partitioning. Thus for regular computa-

tions where the compiler can gather sufficient information about the program, the system

should be able to perform the task automatically. For other programs, the system should

be able to work with directives from the programmer giving partial details on the method

of partitioning. For instance, the programmer may specify a certain alignment between

two arrays through a directive [29], and the compiler should be able to figure out the

remaining details which the programmer does not want to worry about.

With these goals in mind, we have developed an automatic data partitioning system for

multicomputers [23, 25]. Our system has been built on top of the Parafrase-2 compiler [57],

which is used to provide vital information about the program, such as the parse tree structure,

the data dependences, and the control-flow information. Our system, in conjunction with a

small machine-dependent module that provides the cost model for the target machine, can

be used on almost any distributed-memory machine. To allow validation of the underlying

concepts, a version has been developed for the Intel iPSC/2 hypercube [5]. The system accepts

Fortran 77 programs, and outputs a description of the partitioning scheme for each array used

in the program. Our system also accepts Fortran programs in which the programmer explicitly

marks the paraUelizable loops as doall loops.

Clearly, any automatic data partitioning system has to be integrated with a compiler gen-

erating the target program with explicit communication. As we observed earlier, the data

partitioning system has to estimate the performance corresponding to the target parallel pro-

gram (though, without actually generating that program) [24]. Therefore, it needs to know

the methodology that the compiler would finally use to generate the program with message

passing. We approached the problem from the point of view of performance estimation. In the

process, we identified techniques that can be used by a compiler to generate communication in

a better manner I28]. These ideas have led to the evolution of our system into a complete com-

piler for multicomputers, now being developed by our research group. This compiler is called

PAKADIGM (PAt_lelizing compiler for Distributed-memory General-purpose 1V[ulticomput-

ers). In our description, we shall concentrate on just the data partitioning aspects. Throughout

the rest of this thesis, we shall refer to our automatic data partitioning system as "PARADIGM",

or simply, "the compiler".

The remainder of this thesis is organized as follows. Chapter 2 describes our approach to

the problem of automatic data partitioning, and gives an overview of the PARADICM system.

It also discusses related work in this area, and offers comparisons. Chapters 3 and 4 describe

the methodology of estimating the performance of the target program, _ven the source pro-

gram and data partitioning information. For reasons that shall be explained in Chapter 2,

the performance estimation tool has been organized in the form of two separate modules, one

handling the computational part, and the other dealing with communication. Chapter 3 de-

scribes the methodology for estimating the computational costs, while Chapter 4 describes the

estimation of communication costs. Chapter 5 describes how decisions are taken on different

aspects of the data partitioning scheme, in different passes of PAKADIGM. Chapter 6 presents

the results obtained by PARADIGm4 on some real Fortran codes taken from the Linpack and

Eispack libraries, and the Perfect Benchmarks [17]. Finally, Chapter 7 presents conclusions,

and discusses directions for future work in this area.

8

CHAPTER 2

AUTOMATIC DATA PARTITIONING

In this chapter, we describe our approach to the problem of automatic data partitioning on

multicomputers. We refer to it as the constraint-based approach [23]. In this approach, the

compiler analyzes each statement in every loop of the program, and based on performance

considerations, identifies some desirable requirements on the distribution of various arrays being

referenced in that statement. These desirable requirements are referred to as constraints. There

is a quality measure associated with each constraint that captures its importance with respect

to the performance of the program. Finally, the compiler tries to combine constraints for

each array in a consistent manner so that the overall execution time of the parallel program

is minimized. Before explaining what these constraints are, we first need to describe how the

arrays may be distributed on different processors of the machine, and how those distributions

are specified.

2.1 Data Distribution

The abstract target machine we assume is a D-dimensional mesh (D is the maximum dimen-

sionality of any array used in the program) of N1 x N2 x ... x ND processors. The use of

a virtual topology allows our approach to be developed in a machine-independent manner, as

long as that topology is supported by the actual target machine. The mesh topology can, in

fact, be easily embedded on most distributed memory machines. A processor in the mesh is

9

represented by the tuple (pl,P2,...,pD),O < Pk < Nk - 1 for 1 < k < D. The correspondence

between a tuple (Pl,P2,... ,PD) and a processor number in the range 0 to N - 1 is established

by the scheme which embeds the virtual processor mesh on the real target machine. To make

the notation describing replication of data simpler, we extend the representation of the proces-

sor tuple in the following manner. A processor tuple with an X appearing in the ith position

denotes all processors along the ith mesh dimension. Thus for a 2 x 2 mesh of processors, the

tuple (0, X) represents the processors (0, 0) and (0, 1), while the tuple (X, X) represents all the

four processors.

The scalar variables and small arrays used in the program are assumed to be either repli-

cated, or privatized on all processors. For other arrays, we use a separate distribution function

with each dimension to indicate how that array is distributed across processors. We refer to the

kth dimension of an array A as Ak. Each array dimension Ak is mapped to a unique dimension

map(Ak), 1 < map(Ak) < D, of the processor mesh. If N,,=p(Ak), the number of processors

along that mesh dimension is one, the array dimension Ak is said to be sequentialized. The

sequentialization of an array dimension implies that all elements whose subscripts differ only

in that dimension are allocated to the same processor. The distribution function takes as its

arguments a dimension Ak and a subscript value i. It returns the component map(Ak) of the

tuple representing the processor which owns the element A[-, -,..., i,...-], where '-' denotes

an arbitrary value, and i is the subscript appearing in the kth dimension. The array dimen-

sion Ak may either be partitioned or replicated on the corresponding mesh dimension. The

distribution function is of the form

I ,i-offset,r od.T
f(Ak,i) = L_JLm lvm=p(Ak)J if Ak is partitioned (2.1)

X if Ak is replicated

where the square parentheses surrounding modN,,ap(Ak) indicate that the appearance of this

part in the expression is optional. At a higher level, the given formulation of the distribution

function can be thought of as specifying the following parameters: (1) whether the array di-

mension is partitioned across processors or replicated, (2) method of partitioning - blocked or

cyclic, (3) the mesh dimension to which the kth array dimension is mapped, (4) the block size

10

of distribution, i.e., the number of etements residing together as a block on a processor, and (5)

the displacement applied to the subscript value for mapping.

Examples of some data distribution schemes possible for a 16 x 16 array on a 4-processor

machine are shown in Figure 2.1. The numbers shown in the figure indicate the processor(s)

to which that part of the array is allocated. The machine is considered to be an N1 x N2

mesh, and the processor number corresponding to the tuple (Pl,P2) is given by Pl * N2 + P2.

The distribution functions corresponding to the different figures are given below. The array

subscripts are assumed to start with the value 1, as in Fortran.

a) N1 = 4, N2 = 1: f(Al,i) - L I, f(A2,j) = 0

b) N1 = 1, N2 -- 4: f(A1, i) = 0, f(A2,j) - L -J

c) N1 - 2, N2 - 2: f(Al,i)- L J, f(A2,j) -

d) N1 = 1, N2 = 4 : f(Al,i) = O, f(A2,j) = (j - 1) rood 4

e) N1 = 2, N2 = 2: f(Al,i) = [_J mod 2, f(A2,j)= LZ_2tJ mod 2

f) N1 = 2, N_ = 2: f(Al,i) = [_J, f(A2,j) = X

The last example illustrates how our notation allows specification of partial replication of

data, i.e., replication of an array dimension along a specific dimension of the processor mesh.

An array is replicated completely on all the processors if the distribution function for each of

its dimensions takes the value X.

If the dimensionality (D) of the processor topology is greater than the dimensionality (d)

of an array, we need D - d more distribution functions in order to completely specify the

processor(s) owning a given element of the array. These functions provide the remaining D - d

numbers of the processor tuple. These "functions" are restricted to constant values, or the

value X if the array is to be replicated along the corresponding mesh dimension.

11

2

3

I
0]

i

i

I

(a) (b)

0 1

2 3

I

0 1230 1 23 (_ 1 2301 213

I
I
I

(c) (d)

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

O, 1

2,3

(e) (f)

12

Figure2.1:Differentdata partitionsfora 16 • 16 array

2.2 Constraint-Based Approach

As mentioned earlier, our approach is based on the analysis of array references in various

statements inside every loop in the program. This analysis identifies some desirable restrictions

on the distribution of those arrays, that are referred to as constraints on data distribution. Our

use of this term differs slightly from its common usage in the sense that constraints on data

distribution represent requirements that should be met, and not requirements that necessarily

have to be met.

2.2.1 Significance of Constraints

For each statement assigning values to an array A in a parallelizable loop, and using the

values of an array B, there are two kinds of constraints: parallelization constraints on the

distribution of A, and communication constraints on the relationship between distributions of

A and B (this includes the special case when the lhs array A is the same as the rhs array

B). The paralleUzation constraints try to ensure even distribution of the array elements being

assigned values in that loop, and on as many processors as possible. The objective there is

to obtain good load balance, and hence performance gains through exploitation of parallelism.

The communication constraints try to ensure that the data elements being read in a statement

reside on the same processor as the one that owns the data element being written into. That

would make the values required for a piece of computation available locally on the processor

carrying out that computation, thus eliminating the need for interprocessor communication.

We showed in the previous section how the distribution of an array on the target machine

(with a virtual mesh topology) is specified through separate distribution functions for each of

the array dimensions. It was shown that each distribution function is characterized by distinct

parameters such as the mesh dimension to which that array dimension is mapped, the method

of partitioning, the number of processors, etc. A single constraint on the distribution of an

array dimension usually specifies the value of only one of these parameters, and a constraint on

the relationship between two array dimensions specifies how the values of a given parameter for

13

do20mi = 1,morb

xrsiq(mi, mq) = zrsiq(mi, mq) + vat • v(mp, mi)

_siq(mi, rap) = _iq(mi, rap) + vat • _(mq, mi)

20 continue

do 70 mq = 1, nq

do 60 mj = 1,mq

60 xij(mj) = xij(mj) + val • v(mq, mj)
70 continue

Figure 2.2: Program segment from trfd

their respective distribution functions should be related. For instance, an alignment constraint

between two array dimensions specifies that the two dimensions should be mapped to the same

mesh dimension.

Intuitively, the notion of constraints provides an abstraction of the significance of each

statement with respect to data distribution. The distribution of each array involves taking

decisions regarding a number of parameters, and the constraints corresponding to a statement

specify requirements on only the paxameters that affect the performance of the given statement.

This often helps combine requirements from different parts of the program. Consider the

program segment shown in Figure 2.2, taken from a real life scientific application code, the

_rfd program from the Perfect Benchmarks.

The statements in the first loop lead to the following communication constraints - alignment

of xrsiql with v2, identical distributions for zrsiqt and v2, and the sequentialization of xrsiq2

and vl. The satisfaction of these constraints would ensure communication-free execution of

those statements in the entire loop. Similarly, the statement in the second loop advocates

alignment and identical distributions of xijl and v2, and the sequentialization of vl. The

paraUelization constraint for that statement suggests cyclic distribution of xijl, in order to

obtain better load balance (since the extent to which xijl is accessed in the inner loop varies in

different iterations of the outer loop). All of these requirements are consistent with each other.

14

Together,they imply a column-cyclic distribution for v, a row-cyclic distribution for zrsiq, and

a cyclic distribution for zij (the constraint on cyclic distribution gets passed on from xijl to

v2, and from v2 to xrsiql). Thus, the use of constraints facilitates incorporating requirements

from different parts of the program, when those requirements pertain to different aspects of the

data partitioning scheme.

2.2.2 Conflicts among Constraints

The example shown above corresponded to an "easy" case for data partitioning. In general,

different parts of the program may impose conflicting requirements on the distribution of various

arrays, through constraints inconsistent with each other. In order to resolve those conflicts, the

compiler records a measure of quality with each constraint. For the boolean constraints, which

axe finally either satisfied or not satisfied by the data distribution scheme (for example, an

alignment constraint between two array dimensions), the quality measure is an estimate of the

penalty paid in execution time if that constraint is not honored. For other constraints governing

the value to be used for a data distribution parameter, such as the number of processors, the

quality measure is an estimate of the parallel execution time as a function of that parameter.

Depending on whether a constraint affects just the amount of parallelism exploited or the

interprocessor communication requirement, or both, the expression for its quality measure has

terms for the computation time, the communication time, or both.

One may oberve that determination of the quality measures of various constraints requires

special features in the performance estimation methodology. There is a need to isolate the

contribution of (all instances of) a single statement to the total program execution time. In

fact, there is a further need to characterize the times spent on communication of values for

each individual array referenced in a statement. For this reason, we keep separate accounts

of the times spent in computation and communication for each statement associated with the

recording of constraints.

One problem in determining the quality measures of constraints is that their value may

depend on certain parameters of the final distribution scheme that are not known beforehand.

15

The problem isone ofcircularity:theseestimatesare needed in the firstplaceto helpdetermine

a good distributionscheme, and unlessthe distributionscheme isknown, itisdifficultto come

up with good estimatesto guide the selection.We shallfirstpresentan overview of the design

of PARADIGM, and then explainhow thisproblem isresolvedin the system.

2.2.3 Overview of the System

The structureof the overallsystem for automatic data distributionisshown in Figure 2.3.

PARADIGM has been developed as an extensionto the Parafrase-2system [57].Like the base

system, itisorganizedinthe form ofpassesthrough the program. Parafrase-2buildsan interna_

representationfor the program, providinginformationsuch as the parse tree structure,the

data dependences,and the controlflowinformation.Italsoperforms constantpropagation and

inductionvariablerecognition.The internalprogram representationkept by Parafrase-2has

been extended to incorporateadditionalinformationthat PARADIGM needs about the program,

such as the count of operationsin assignment statements,and the canonicalrepresentations

of subscriptexpressions.This additionalinformationis recorded in the scc and the setup

passes,which are the firsttwo passesto be invoked in PARADIGM followingthose ofParafrase-

2. Further detailsare given along with our discussionof the methodology for estimationof

computational costsin Chapter 3,and of communication costsin Chapter 4.

The decisionson data distributionscheme are taken in a number of distinctpassesthrough

the program. Each pass takes decisionson a singleparameter for the distributionfunctions

of allthe arrays.The align pass maps each array dimension to a processor-meshdimension,

on the basisof the alignment constraintsamong variousarraydimensions. The block-cycl£c

pass determines for each array dimension, whether itshould be distributedin a blocked or

cyclicmanner. The block-sizQ pass determines the block sizeto be used foreach dimension

distributedin a cyclicmanner. The num-procs pass determines the number of processorsin

each ofthe processor-meshdimensions to which variousarraydimensions are mapped.

Each of the above passesdetermininga distributionparameter isorganizedin the form of

three modules. The del;ec'cormodule detectsopportunitiesfor recordinga constrainton the

16

sequential Fortran program

•,

Parafrase-2

Alignment

Detector

Driver Blocked/Cyclic I
Computational
Cost Estimator

Cost Estimator

Number of proes

modified Fortrau program with annotations

Figure 2.3: Overview of automatic data partitioning in PARADIGM

given distribution parameter for any array. The driver module invokes the communication

cost estimator and/or the computational cost estimator to obtain the quality measure of that

constraint. For example, to obtain the quality measure of an alignment constraint, the com-

munication cost estimator is invoked twice - once to return estimates when the given array

dimensions are properly aligned, and the next time to give cost estimates when those dimen-

sions are not aligned. The quality measure recorded is the difference between these costs. Once

all the constraints affecting the given distribution parameter and their quality measures have

been recorded, the solver determines the value of that parameter, by solving the corresponding

optimization problem. The details regarding each of the passes are presented in Chapter 5.

Let us now consider the problem of circularity in obtaining the measures through perfor-

mance estimation. This problem is dealt with through a combination of two techniques. During

17

the early stages, the compiler uses "reasonable" values of parameters not known at that point,

based on some simplifying assumptions. For instance, while determining the quality measures

of alignment constraints, the compiler assumes that each array dimension is distributed in a

blocked manner, and on an equal number of processors. In successive passes, as decisions are

taken on different aspects of the partitioning scheme, the amount of information available to

the compiler increases, thus enabling more accurate performance estimation to guide the choice

of the remaining distribution parameters. Note that the number of processors in each mesh

dimension is not determined until the very end. Therefore, another technique we use is to ex-

press all performance estimates in a symbolic form, with the number of processors in different

mesh dimensions appearing as parameters in those expressions. This eliminates the need for

repeated program analysis to obtain different performance estimates, when the only parameters

changing are the number of processors in various mesh dimensions.

2.3 Related Work

Due to the close relationship between the problem of automatic data partitioning and of gen-

erating data-paraUel programs, our work is related and relevant to numerous research projects

on compiling for distributed memory machines. We have described some of that work in the

previous chapter. In this section_ we only examine the research efforts that have addressed the

problem of automatically determining a data partitioning scheme, or of providing help to the

user in this task.

Mace worked on the problem of selecting memory storage patterns (shapes) [50] for vector

machine environments, particularly those using memory interleaving. Using a graph-theoretic

framework for computation, she shows that the problem of finding optimal data storage patterns

for parallel processing, even for 1-D and 2-D arrays, is NP-complete. Those results are valid

for distributed memory machines as well.

Ramanujan and Sadayappan have worked on deriving data partitions for a restricted class of

programs [60]. They present a matrix notation to describe array accesses in parallel loops and

18

derive conditions for communication-free partitioning of arrays [61]. Their approach is mainly

directed towards individual loops, and they do not discuss applying these ideas to complete

programs, which might have conflicting requirements on the partitioning scheme.

Hudak and Abraham [34], and Socha [71] present data partitioning techniques for sequen-

tially iterated parallel loops, based on the access patterns inside those loops. Their work allows

for more general data distributions than those described by us, but it may be difficult for most

compilers to generate efficient communication for such complex distributions. These approaches

have the limitation of restricted applicability, they apply only to programs that may be modeled

as a single, multiply nested loop structure.

Tseng describes the AL compiler [77] that performs data mapping once the programmer

chooses one dimension of each array that is to be distributed on the linear array of processors

in the WARP machine. The techniques used in the AL compiler need to be extended signifi-

cantly to allow the distribution of multiple dimensions, and to recognize automatically which

dimensions to distribute.

Knobe, Lukas, and Steele have developed techniques for automatic data layout on SIMD

machines [41, 42]. They use the concept of preferences between data references to guide the

layout process, which is similar in spirit to our use of constraints to guide the choice of data

distribution parameters. A significant feature unique to our approach is the analysis carried

out to record the quality measure with each constraint, which leads to a much more precise

characterization of the "weight" to be attached to each constraint.

Balasundaram, Fox, Kennedy, and Kremer discuss an interactive tool that provides assis-

tance to the user in determining the data distribution [6, 40]. The key element in their tool is

a performance estimation module, which is used to evaluate various alternatives regarding the

distribution scheme. They use the method of "training sets" to help estimate the performance

of a program with message passing [7]. Those techniques need to be extended to allow perfor-

mance estimation, given just the source program and data partitioning information, without

actually translating it to one with explicit message passing.

19

Ourresearch has been influenced by the work of Li and Chen on the Crystal compiler [48, 47],

and theirs is probably the most closely related to our work. In [48] they discuss the problem

of alignment between array dimensions, show it to be NP-complete, and present a heuristic

algorithm for that problem. However, the measures they use to capture the importance of

any given alignment are somewhat simplistic. PAaADIGM obtains more appropriate measures

by estimating the penalty in communication costs if the array dimensions are not aligned the

proper way. Li and Chen also describe how explicit communication can be synthesized and

communication costs estimated by pattern-matching on data references in the source program

[47]. We have introduced the notion of synchronous properties between array references that

enables our compiler to perform more sophisticated analysis.

A feature common to the approaches proposed by Kremer and Kennedy [40], and Li and

Chen [47] is that the data partitioning decisions (except for the decisions on alignment) are

based on comparisons between almost all possible alternatives regarding those schemes. An

advantage of this approach is that the performance estimation can now be done in a more

accurate manner. However, as the problem size is increased, the number of possibilities to

consider becomes too large, unless additional heuristics are incorporated to prune the search

space.

Chapman, Herbeck and Zima describe the features of a knowledge-based interactive tool

[12] to provide support for automatic data distribution. Their tool relies on program analysis

and pattern-matching techniques, in conjunction with the use of a knowledge base to guide the

search for a good data partitioning scheme. This tool is being developed as part of the second

generation of the SUPERB compiler [811.

Wholey describes an automatic data mapping system for the ALEXI language [78]. The

problem of performance estimation is simpler compared to that for Fortran 77 programs, since

the ALEXI programs already have the calls to primitives to carry out high-level communication

and parallel array operations. The ALEXI compiler uses a detailed cost model for performance

estimation to guide data partitioning decisions. The compiler does not deal with the problem

of alignment conflicts between arrays.

2O

O'Boyle and Hedayat describe application of transformations in a Sisal compiler to achieve

better data alignment and load balancing [52, 53, 54]. One of the main contributions of their

work is in providing a linear algebraic framework to apply those transformations. However,

they do not discuss resolving conflicts between alignment requirements of different paxts of

the program. While their framework is quite elegant, we believe it is not very well-suited to

modeling communication costs accurately, since it ignores many relevant factors, like the nature

of communication primitives.

21

CHAPTER 3

ESTIMATION OF COMPUTATIONAL COSTS

This chapter describes the methodology used to estimate the computational part of the parallel

program execution time. By computational part, we simply mean the execution time of the

parallel program if all communications take zero time. These estimates help determine the

quality measures of paraUeUzation constraints on the distribution of various array dimensions.

Specifically, those measures are used to guide the choice of blocked or cyclic distributions, and

the number of processors on which the array dimensions are distributed.

The basic approach we use for performance estimation of programs is to determine tl_e

contribution of each statement to the overall program execution time. Thus, to estimate the

sequential execution time for a program, the compiler would estimate the following items for

each statement in the program: (i) time taken to carry out the computation of a single instance

of that statement, and (ii) count of the number of times that statement is executed. Extending

this analysis to estimate the parallel execution time requires an understanding of how the

compilers for multicomputers expose parallelism in programs.

The methodology used by compilers to generate parallel code for multicomputers relies

mainly on the exploitation of data-parallelism. Logically, the unit of computation that is

scheduled on a processor is a single statement (as opposed to an entire iteration, typical in

the case of control-parallelism). As a consequence of the owner computes rule, computations

for different instances of a statement (corresponding to different iterations of a loop) are parti-

tioned according to how the lhs data elements (the data elements being assigned values) are

22

distributed. The overall computation time is determined by when the last processor finishes its

share of computation. If there is no flow dependence between different instances of the given

statement, the compiler simply has to determine the time taken by the processor with maximum

load. If there are flow dependences, the compiler has to account for the synchronization delays

as well. For example, consider a flow dependence from S(i) to a later instance S(j), i < j, of the

statement. If S(i) and S(j) are executed by different processors, the compiler has to recognize

that the computation for S(j) will start only after the computation for S(i) is complete. In

addition, there would be a further delay due to communication of the value computed by S(i)

that is used by S(j). However, we keep a separate account for the communication costs. In this

chapter, we describe estimation of only the computational part of the overall execution time.

The next chapter describes our methodology for estimating the communication times.

We first present some relevant details of the internal representation kept for a program, and

how the computational costs pertaining to all instances of a given statement are estimated. It

is important to keep in mind that the purpose of the estimation process is not to predict the

actual execution time of the program. The objective is to guide the selection of data partition-

ing scheme by determining the performance implications of choosing some data partitioning

parameters a certain way for a given statement.

3.1 Program Information

This section describes some information regarding the source program recorded by Parafrase-2

and the PARADIGM compiler, and terms that we shall use in later discussions.

Dependence Information The builddep pass in Parafrase-2 builds a data dependence

graph [46] that keeps the information regarding all data dependences in a program. Each

dependence is labeled as a flow, anti, or output dependence. Associated with each dependence

edge representing a dependence from statement S1 to statement $2, both nested in n loops, is a

direction vector (dx, d2,..., d,_), where d_ E {<, =, >, <, >, 5, *} [79]. The direction vector de-

23

scribes the direction of dependence for each loop, with dl describing the direction of dependence

for the outermost loop, and successive components of the vector describing directions for the

inner loops. The forward direction "<" implies that the dependence is from an earlier to a later

iteration of the corresponding loop, "=" implies that the dependence does not cross an iteration

boundary, and ">" means that the dependence crosses an iteration boundary backwards. The

other four directions are simply combinations of these three basic directions, and are associated

with imprecision in data dependence tests. In Fortran do loops, a backward direction can occur

only if there is a forward direction in an outer loop. Another way this fact is often expressed

is that every legal direction vector has to be non-negative, where the directions "<","=', and

">" are expressed as +1, 0 and -1, respectively.

Once the data dependence graph is built, the dol;odoall pass in Parafrase-2 determines for

each loop whether it can be parallelized or not. A loop at level k is regarded as sequential if

there is at least one dependence edge between nodes representing statements in that loop that

has a direction vector of (dl, d2,..., d,) satisfying the following properties: (i) dk 6 {<, _<, #, *}

(ii) Vi in [1, k - 1], di _ {<, >, _}. These conditions check for the existence of a cross-iteration

dependence that it is not satisfied by the sequentiality of an outer loop. The significance of

ignoring a dependence in the ">" direction at level k lies in the fact that a ">" direction can

occur only when there is a "<" direction occuring at an outer level [?9]. The remaining loops

are marked doall in this step.

The information about control dependences was not yet available in our version of Parafrmse-

2. Hence for simplicity, the only dependences we have considered in this work are the data

dependences in a program. Control dependences can be handled by converting them to data

dependences [3], or by using a different program representation, the program dependence graph

[20] instead of a data dependence graph.

Strongly Connected Components in Dependence Graph The scc pass in PARADIGM

operates on the data dependence graph built during the builddep pass of Parafrase-2, and

identifies the strongly connected components in the graph [?2]. Initially the compiler deter-

mines max-level, the maximum nesting level of any loop in the program. Since the extent

24

of parallelismhasto be estimated at all loop levels, the compiler determines the strongly con-

nected components at all levels varying from 1 to max-level [2]. We shall briefly describe here

the notion of level°k dependence graph and level-k strongly connected components. The

interested reader is referred to [2] for further details.

Given a dependence graph DG, the corresponding level-k graph DGk is derived as follows.

The nodes included in DGk are those corresponding to statements nested at level k or greater.

An edge from DG between these nodes is included in DGk if and only if the associated direction

vector (dl, d2,..., d,_) satisfies the following properties: (i) dk _ ">" (ii) Vi in [1, k - 1], d_ _ {<

, >, _}. These conditions lead to any dependence satisfied by the sequentiality of loops outside

level k to be ignored. Thus, DGk may be regarded as the graph derived from DG by considering

only the edges at nesting level k or greater. The scc pass in the compiler identifies the strongly

connected components (SCCs) in each such graph DGk "built" for a loop at level k. For each

statement at nesting level m, the compiler records information identifying the SCC it belongs

to at each of the levels 1 through m.

Array References and Computation Times During the sel:up pass, PARADIGM traverses

the expression tree corresponding to each assignment statement to record a list of all the

variables (both scalar and array variables) referenced in that statement. During this traversal,

the compiler also keeps a count of the number of loads and individual arithmetic operations in

the computation. Given information on the times taken to carry out each of those operations

on the target machine, these counts are now used to record the execution time estimates for

a single instance of each statement. Our machine-specific version of PARADIGM uses simple

timing figures for the Intel iPSC/2 hypercube for this purpose. For each array reference, the

compiler records additional information about each subscript expression, as described below.

Subscript Types PARADIGM analyzes the expression corresponding to each subscript, and

assigns it to one of the following categories:

• constant: if the subscript expression evaluates to a constant at compile time.

25

• single-index: ifthe subscriptexpressionreduces to the form a * {+ _, where a, fl are

integerconstantsand iisa loop index.

• multiple-index: ifthe subscriptexpressionreducesto the form al * il "_-Or2* i2 % • • •"_-

ak *{k+ 19,k > 2, where al,...,a_ and flare integerconstants,and ii,...,i_are loop

indices.

• unknown: thisisthe defaultcase,and signifiesthatthe compiler has no knowledge ofhow

the subscriptexpressionvarieswith differentiterationsof a loop.

The canonicalform of the subscriptexpressionshown above isrecorded ifthe subscriptis

of the type constant, single-index or mull;iple-index. For each subscript,the compiler

alsodetermines the value of a parameter calledvariation-level, which is the levelof the

innermost loop inwhich thatsubscriptchanges itsvalue.For a subscriptof the type constant,

it isset to zero. For allother subscripttypes,the compiler firstdetermines the loop level

corresponding to the innermost loop index that appears in the subscriptexpression. The

variazion-level of a subscriptof the type single-index or mulZiple-index isset to that

value.For a subscriptofthe typeunknown, the compUer alsoconstructsalistofallthe variables

appearingin the subscriptexpression.Itexamines the nestinglevelsof allthe statementsfrom

which there isa flow dependence to the given statement due to one of the variablesin the

list.The minimum of theselevelsand that of the innermost loop index (ifany) appearing in

the subscriptexpressionyieldsthe variation-level of thatsubscript.This givesthe compiler

additionalinformationabout the "unknown" subscript,namely, the loopswith respectto which

that subscriptexpressionisan invariant.

Based on our experiencewith some real-lifeapplications,we have found keepingthe following

additionalinformationabout subscriptstobe useful.Considera subscriptexpressionoftheform

_I *ii+.. •+ c_k•ik+ z,where z isan expressionofthe type unknown with a varia_;ion-leval

smallerthan that ofthe firstpart,c_i*ii+ ...+ at *{k.In such a case,the overallsubscriptis

regarded as ofthe type unknown, but the compileralsorecordsthe firstpartof the expression.

That enablesthe compilerto detectregularityin the variationofsubscriptforthe innermost h

26

do jl = _I, fl_ 81

do j2 = i2, f2, a2

do j._ = i,., f._, s..

A(gl,g2,... ,gp) = "'"

Figure 3.1: Assignment statement with array references

loops.Currently,PARADIGM carriesout thisanalysisonly for k = I,i.e.,forsubscriptsof the

form al * il + z.

Iteration Counts and Reaching Probabilities for Statements Consider the statement

S shown in Figure 3.1. The estimates of execution time spent on S depend on the iteration

count of the surrounding loops, and on the branching probabilities of various conditionals in the

program that affect the flow of control to that statement. The loops surrounding the statement

need not form a perfectly nested structure. When the initial value it, the final value fl, and

the stride 8t of the loop index for LI are constants, the iteration count of the loop can easily

be determined as nt = [(ft - it)/stJ + 1 if ft >_ it, otherwise nt is set to zero. Tawbi and

Feautrier present an algorithm [73] that computes an approximate count of the total number of

iterations when the expressions for it and ft are linear functions of the surrounding loop indices.

Their algorithm computes an approximate solution to the problem of counting the number of

integer points in the bounded convex polyhedron corresponding to the loop nest. However, our

methodology for performance estimation requires explicit estimates for the expected value of

each of those loop bounds, particulaxly for estimating communication costs. These expected

values should be chosen such that the product of the iteration counts computed for each loop

is equal to the total iteration count for the entire loop nest (note that the available algorithms

compute the symbolic form only for the count for the complete loop nest).

27

doi= 1, n

doj = i,n

$1
enddo

enddo

Figure 3.2: Variation of inner loop bounds with outer loop index

For a commonly occurring case where only one such inner loop has bounds that are linear

functions of an outer loop index (say, i), the solution is quite straightforward. The compiler

simply replaces each occurrence of i in the expression for loop bound by the expected value of i,

which is set to the arithmetic mean of the lower and upper bounds of the corresponding loop.

For example, in the following loop, the expected value of i is set to (n + 1)/2. In more complex

cases, and when the expressions for loop bounds involve other variables having values unknown

at compile-time, the compiler queries the user for the expected values, of loop bounds. A more

sophisticated system can obtain these values through profiling [68].

In general, due to the presence of conditionals, the number of times a statement is executed

during the program would be less than or equal to the product of iteration counts of all the

loops surrounding it. For each statement S surrounded by rn loops, rn >__1, we define a quantity

cMled its reachin 9 probability, that models the effect of all conditionals in the program from

which there a control dependence to S. The reaching probability is defined as:

gtl

p(s) = n,,m(S)/(l" I n,),
/=1

where hum(S) is the number of times S is executed during the program, and nt denotes the

expected value of the iteration count of loop Lt. Probably the best way to determine p(S) for

each relevant statement S is to use profiling [68]. The current version of PARADICM follows

a relatively simpler approach where the user supplies these values for any statement having a

reaching probability significantly lower than one. For all other statements, the default value

assumed is one.

28

3.2 Computational Cost for a Statement

Consider again the statement shown in Figure 3.1. The first step in the estimation process is to

determine the loops with respect to which computations involving the given statement S can

be executed in parallel. In the next step, the compiler uses data partitioning information to

determine how those computations would be partitioned on processors.

3.2.1 Identification of Loop Level Parallelism

The algorithm in Figure 3.3 determines the innermost loop level lmax at which the statement

S is involved in a recurrence. The compiler infers that the statement S can be parallelized

with respect to all the loops nested at levels greater than lmax, and also with respect to all

the loops outside L_,n_x that are marked doal:], during the dotodoall pass. (A loop at level

k is referred to as L_). Thus, for a statement S to be parallelizable with respect to a loop,

the characterization of that loop as a doall at the end of the dotodoall pass is a sufficient,

and not a necessary condition. In general, exploiting parallelism at all these levels requires

transformations like loop distribution and loop interchange, which can be identified using this

algorithm. Any doall loops outside the loop Lt,naz need to be brought inside through loop

interchange. Whenever the source S _ of a loop-carried dependence and S belong to different

SCCs in the level-l dependence graph DGI (see line 7 of the algorithm), if l takes a higher

value than the eventual value of lmaz, the loop Li should be distributed over the components

corresponding to statements S _ and S. This would enable parallelization of the statement S

with respect to Lt, which would not be possible otherwise.

Legality of ignoring output and anti dependences We shall now explain why the com-

piler can safely ignore all output and anti dependences to statement S in the given algorithm.

Consider an output dependence from a statement instance S'(i) to a statement instance S(j).

By the definition of output dependence, S_(i) and S(j) must write into the same data element.

Hence by the owner computes rule, the same processor must perform the computation of both

29

lmax -- 0

for each dependence into S do

if ((dependence-type == flow) and (dependence is loop-carried))

S t = source statement of dependence

determine k = (innermost) loop level at which dependence is carried

for(I=k;l>_ 1;l--)do

if S and S' belong to same SCC in DGt
break

endif

endfor

lmax = max(l, Imax)
endlf

endfor

Figure 3.3: Algorithm to determine loop level parallelism for S

of those statement instances. Therefore, output dependence cannot place any constraints on

the relative execution order of computations assigned to different processors. In other words,

output dependence does not lead to any loss of effective parallelism (beyond that caused by the

owner computes rule). Now consider an anti dependence from St(i) to S(j). Such a dependence

implies that St(i) has to use the value of a data element (say, x) before S(j) assigns a value

to it. For this dependence to impose an ordering between computations on different proces-

sors, the two statement instances St(i) and S(j) must be executed by different processors. The

translation process followed by the compiler would cause the processor owning z to send that

value to the processor executing St(i), and would also ensure that the correct value of x is sent

before S(j) overwrites that value. Hence, regardless of the relative order of execution of St(i)

and S(j), the underlying data dependence is honored. Thus there is no ordering constraint

between computations involved in an anti dependence, that take place on different processors.

3.2.2 Contribution of Each Loop to Computational Cost

We now describe how PARADIGM estimates the contribution of all instances of statement S to

the parallel execution time (excluding the time spent on communication). The estimated time

3O

isgiven by the followingexpression:

T(S) = p(S)*(II Ct(S))*t(S) (3.1)
/=1

where p(S) isthe reachingprobabilityfor S, t(S) isthe estimated executiontime for a single

instanceof S, and CI(S) isthe contributionterm from the loop Ll.

The value of Ct(S) depends on the iterationcount nt of the loop Lt, and on the extent

to which the statement S iseffectivelyparallelizedin differentiterationsof that loop. The

algorithm to determine the Ct(S) terms proceeds from the innermost loop (l = m) to the

outermost loop (I= 1).Each stepisbased on the followingtwo cases:

I. Ifthe computations forS aremarked sequentialwith respectto Ll,or ifno subscriptinthe

lhs reference A(gl,g2,...,g_) has a variazion-level of I, Ct(S) is set to the iteration

count nz. The first condition represents the lack of available parallelism, while the second

condition represents the entire computation corresponding to nl iterations being mapped

to a single processor.

2. If the computations for S are marked parallelizable with respect to Lt, and if there is a

subscript gk with variation-level l, the contribution term Ct(S) is set to the number

of iterations (for statement S) that the processor with maximum load is assigned. The

expression for that depends on the type of subscript g_. Clearly, the subscript cannot be

of the type constant, since a constant subscript must have a variation-level of zero.

Thus, there are three possibilities regarding the type of subscript:

• single-index : let gk = 31 * jt + 81, where 31 and/51 are constants. Let the array

dimension A_ be distributed on Nk processors, with a block size of bk. We define

the loop range rz to be fl - il + st if ft _> it, and zero otherwise. Given that Ak

is distributed in a blocked-cyclic manner (of which blocked and completely cyclic

distributions are special cases), the term contributed by the loop Ll is given by the

following expression:

c (s) = (Lbd(l ll *s,)J * L(l ll * rz)/(N • bk)J)+

min([bd(l ll * z)J, i'((1 11* ,z) rood (Nk * bk))/(l ll * t)l) (3.2)

31

Figure 3.4 illustratesthe situationfor Nk - 3, and helps explainhow we arriveat

thisexpression.The regionP representsthe partof the computation that isdivided

equallyamong allprocessors.The term [(lazl*rz)/(Nk*bk)Jdenotes the number of

complete blockscoveredin thatregionon each processor.The term [bk/(]c_zl*st)J

denotesthenumber ofloopiterationsthattraversea singleblockofAk on a processor.

Thus, the product of these two terms (thefirstadditiveterm in the expressionfor

CI(S)) representsthe contributioncorrespondingto the regionP. The remaining

part of the computation, marked Q, isnot dividedequallyon allprocessors.Ifthe

extentofthisregionexceedsthe blocksizeofAt, the additionalnumber ofiterations

executed by the most loadedprocessoris[bk/(]az]*sz)J.Otherwise,that additional

number is [((]az] * rz) mod (Nk * bk))/(]al] * sl)], i.e., the total number of iterations

corresponding to the region Q.

• mull;iple-index :letgk = az *jl+a2 *jt+z+...+a,n-t+z *j,_+/3. For the purpose of

analysis,the compiler *'freezes"allthe loops outsideLl that contributetheirindex

to the subscriptexpression.Thus, the computations for S are marked sequential

with respectto each of the loopsoutside£i forwhich the coefficientofloop index in

the expressionfor gl,isnon-zero.The given case now reduces to the previousone,

and the expressionforCz(S) isidenticalto the one shown in Equation 3.2 above.

• unknown : the nature ofpartitioningofcomputation isunknown at compile time in

thiscase.Therefore,itisnot possibleto obtainan accurateestimateforthe contribu-

tionterm at compile time. The compilerassumes that the load does get distributed,

but with an imbalance,causingthe speedup to be reduced by an imbalance-factorof

imb (a parameter that issetto an arbitrarysmall value greaterthan one). Clearly,

when communication costsare not considered,the speedup cannot be lower than

one. Thus, the speedup isestimatedto be max(Nk/imb, I),and the estimate of the

term contributedby the loop £I is:

c,(s) = r(ndm (gk/imi,, 1))1

32

bkI

A k

iiiiiiiiiiiii iiiiiili i i i iiiiiii i

iii!iiii!i_iiiiiiiiiiiiiil
::::::::::::::::::::::::::::
........... I.
::::::::::::::::::::::::::

iiiii:ii!!!iiiiiiiiii_:!iiiiiii!iii!i!i_i!i!!!iiiii

iii[iiii!iii!iiiiiiii!_ [i!i!i!_iii!iii!iiiiiiiii!

7

P

i

m

- Q
i

m

Figure 3.4: Region of Ak accessed in loop Lt

If there are two or more subscripts for which the variation-level is l, it implies that

the computation "traverses" multiple mesh dimensions in the loop Lt. Figure 3.5 shows

an example, where both the mesh dimensions are being traversed in the/-loop. Consider

the terms obtained by applying the above rules individually to each subscript. Each such

term represents the number of iterations in which the computation crosses a processor

boundary along the mesh dimension corresponding to that subscript. In the example

shown, the two terms obtained would be n/2 and n/4. Clearly, the number of iterations

(for statement S) assigned to a single processor is given by the minimum of such terms

(which is n/4 in the given example). Therefore in case of multiple subscripts varying in

the same loop, the contribution term for the loop is determined by taking the minimum

of all the contribution terms obtained for individual subscripts.

In actual practice, the number of processors in various mesh dimensions are not known at

the time of the estimation process. Hence, the expressions for these estimates are recorded

in a symbolic form, with the number of processors in different mesh dimensions appearing as

parameters.

33

3.3

1 n/4 n

doi= 1, n

A(i,i)= n/2

n

I I

I I
I I

llli__ll

Figure 3.5: Variation of multiple subscripts in the same loop

Detection of Overlap

Even when computations for a statement S are marked sequential with respect to a loop, they

may still overlap when they are distributed over more than one processor. The algorithm

described in the previous section ignores that overlap. We now describe special cases when the

compiler can estimate the extent of overlap, and modify the cost estimates appropriately. It

may be recalled that computations for S would be marked sequential with respect to a loop Ll

if there is any flow dependence to S from another statement belonging to the same SCC in the

level-/ dependence graph DGt. We consider the special cases when the only flow dependence

to S is from itself.

3.3.1 Case 1: OneToMany dependence

A special case of loop-carried flow dependence is one where the dependence is from a single

instance of a statement to other instances of the same statement. Consider the example shown

in Figure 3.6. If we have 1 _< k < n, there is a flow dependence from the statement instance

corresponding to the kth iteration to those corresponding to later iterations. Continuing with

the terminology from the previous section, let the loop have its index jl varying from il to ft

in steps of st. When the iteration corresponding to the source of dependence can be identified

34

do/= 1, n

a(i) = Y'(a(k))
enddo

Figure 3.6: Statement with onetomany dependence

at compile-time (say,jt -- dr),the compiler analyzes the loop by breaking it up into three

parts: the (possiblyempty) initialpart with loop bounds iland dt - st,the singleiteration

dr,and the finalpart with loop bounds dt+ st and ft. Both the initialpart and the final

partscan now be regarded as paraUelizableloops,and the overallcontributionterm obtained

as Ct(S) = C_(..,c) + 1 + C/t(S), where C_(S) and C[(S) denote contributionterms from the

initialand the finalpartsof the loop respectively,and are obtained using Equation 3.2.

3.3.2 Case 2: Constant dependence

For a statement S, when the only flow dependence carried by loop Lt has a constant dependence

distance d, there is an overlap possible between computations of S over d successive iterations

of Lt. Figure 3.7 shows an example of such a statement, and illustrates the overlap possible

between computations in the/-loop, for the general case of A being distributed in a blocked-

cyclic manner. The expression for the overlap term (using the terminology defined in the

previous section) is:

O (S) = (min(d- 1, Lbk/(l xl * st)J) * (F(I I[* rt)/bkl - 1)

In the above expression, F(I aI*rt)/bk] - 1 represents the expected number of processor bound-

aries "traversed" by the computation during the loop Lt. The term min(d- 1, [bk/(]all * st)J)

gives the number of iterations corresponding to the traversal of each block, that can be over-

lapped with the computation of elements in the preceding block.

However, on most multicomputers, the need to vectorize messages being sent in the/-loop

(to offset the high start-up costs of sending messages) would make it undesirable to exploit the

pipelining of computation at this level. The above analysis is now used for obtaining a balance

35

doi=d+ l,n

,4(i) = _(a(i - d))

enddo

po I I I I I
/

P1 I I I [SS_

P2 I

I
|

I' e
i
o

1 ;e
e e
i e

i i

d,_l*S 1

' ' 1: !

: bk '

O_ 1" i l O_ 1" f l

Figure 3.7: Overlap of computations in case of constant dependence

between the two goals of vectorizing messages and exploiting pipeline parallelism. That can be

done by stripmining [55] the loop Lt, and the analysis we have shown helps choose the block

size for stripmining in such cases. However as we shall explain in the next chapter, PARADIGM

does not currently carry out this analysis for the purpose of estimating communication costs.

36

CHAPTER 4

ESTIMATION OF COMMUNICATION COSTS

This chapter describes the methodology for estimating the times spent on communication during

program execution. These estimates are obtained in a largely machine-independent manner,

and are expressed in terms of times to carry out certain high-level communication primitives

on the target machine. Given information regarding the performance characteristics of those

primitives on a multicomputer, the actual times spent on communication can then be estimated

for that specific machine.

Our primary objective for estimating communication costs is to determine the quality mea-

sures of various communication constraints, and hence guide the selection of data partitioning

scheme. However in that process, the compiler also identifies better ways of generating com-

munication. It determines when messages may be combined to reduce the communication

overheads, and the loop transformations that need to be applied to enable such optimizations.

Besides, the compiler also identifies opportunities for using collective communication primitives,

which is useful in many ways:

* The code generated using this analysis is much more concise, as numerous calls to the

send and receive primitives get replaced by fewer calls to high-level primitives.

• The performance of programs can be improved by exploiting efficient implementations

of such routines on the target machine. For instance, the broadcast routine can be im-

plemented using log2(N) steps on an N-processor machine, whereas an equivalent piece

37

of code using individual send and receive primitives would take up N steps. It can be

seen that the performance benefits improve with an increase in the value of N. Hence,

the exploitation of collective communication is especially important for massively parallel

machines.

Our main motivation for performing this analysis in the context of performance estimation

has been to capture the communication costs in a concise manner. Thus, our methodology

for estimation of communication costs also lays down a framework for effective generation of

interprocessor communication by compilers [26].

In keeping with the objective of obtaining quality measures of constraints on distribution

of specific arrays, the estimation of communication costs is done separately for each array

referenced in a statement. The estimates reflect the communication requirements pertaining

to that array for executing all instances of the given statement. This process consists of the

following steps: (i) determining the extent to which communication can be combined, and

where the communication should be placed, (il) analyzing the data movement required in each

mesh dimension to recognize the best communication primitive to use, and to determine the

data sizes and the number of processors involved in that communication, and (ill) determining

the order in which communication primitives operating over different mesh dimensions should

be invoked. Each of these steps is described in detail, following a description of the high-level

communication primitives, and some results on the characterization of array references that

helps carry out the second step.

4.1 Communication Primitives

This section describes the special primitives that are recognized by the compiler as appropriate

for implementing the data movement in different parts of a program. Many of the early ideas

on these routines came from Geoffrey Fox and his co-workers [21], in the context of developing

scientific application programs on multicomputers. Many researchers have looked at the prob-

lem of developing efficient algorithms for such primitives [32, 37], and obtaining parameterized

38

estimates for the performance of those primitives on specific machines [7, 38]. The list of prim-

itives is given below. All of these primitives, other than Transfer, are referred to as collective

communication primitives, since they represent communication over a collection of processors.

• Transfer : a single source processor sends a message to a single destination processor.

• 0neToManyMulticast : a single source processor sends a message to all other processors

in the given group.

• ManyToManyMulticas1: : all processors in the group send data to all other processors in

that group.

• Scatter : a single source processor sends different messages to all other processors in the

group.

• Gal;her: all processors send messages to a single destination processor in the group.

• Shift : circular shift of data among adjacent processors in a group.

• Reduction : reduction of data using a simple associative and commutative operator, over

all of the processors in the group.

Figure 4.1 illustrates the data movement associated with each routine. Table 4.1 shows the

time complexities of functions corresponding to these primitives on the hypercube architecture.

The parameter ra denotes the message size in words, p represents the number of processors in

the group over which the collective communication routine is carried out.

The use of high-level collective communication routines is beconfing increasingly popular

with application programmers on multicomputers. A number of such communication libraries

have been developed, in some cases, as part of a broader research effort [56, 21, 16, 67].

4.2 Characterization of Array References

The communication requirements for an rhs array reference in a statement depend on the

relationship between processors owning the elements corresponding to the rhs and the lhs

39

Transfer

OneToManyMulticast

ManyToManyMulticast

Scatter

Ga_er

Shift

Reduction

Figure 4.1: Communication primitives recognized by PARADIGM

40

Primitive Cost on Hypercube

Tr asfer(m) O(m)
OneToManyMulticast(m, p) O(m, log p)

ManyToMamyMulticast(m,p) O(m, p)

Scatter(m, p) O(m * p)

Gather(m, p) O(m • p)

shift(m) o(m)
Reduction(re, p) O(m, log p)

Table 4.1: Cost complexities of communication primitives on the hypercube architecture

reference for all instances of that statement. (Throughout this thesis, we shall use the term

array reference to refer to the symbolic term appearing in the program, not the physical reference

(read or write) to the element(s) represented by that term). In order to infer the pattern of

communication during different iterations of a loop, the compiler has to study the variation of

subscripts corresponding to distributed dimensions in those references. In this section, we define

the properties regarding such variations, and present compile time tests to detect the presence

of those properties. These tests enable the compiler to identify the high-level primitives that

can effectively realize the data movement needed. In addition, we define quantities associated

with array references that help characterize the extent of communication in terms of data sizes

and the number of processors involved. The results presented in this section shall be used in

the algorithms described in Section 4.4 to obtain the communication cost terms.

4.2.1 Definitions

We refer to a subscript in an array reference, corresponding to a particular distributed dimension

as a sub-reference. A sub-reference can be represented by a tuple (r,d/, where r is an array

reference, and d is the position (d >_ 1) of the subscript in that reference. A sub-reference varying

inside a loop can be seen as traversing a sequence of elements distributed on different processors

along a mesh dimension. Figure 4.2 shows the traversal of two sub-references, (A(i, cl), 1) and

(B(c2, i), 2), by solid lines.

41

do/= 1,n
a(i, cl) = B(c2, i)

enddo

n

c 1
A n

!

!

(0,0) ' (0,1)!
!
ff
!

(1,0) ! (1,1)!
!

I

(2,0) ' (2,1)I
!

I

(3,0) ! (3,1)!
I

1

c 2

I1

B
n

Figure 4.2: Example program segment

The sequence of processor positions in a mesh dimension traversed by a sub-reference sr in

a loop L is referred to as its ezternal sequence with respect to the loop, denoted as es(sr, L).

Similarly, the sequence of memory locations traversed on a processor at position p in the mesh

dimension is referred to as its internal sequence, denoted as ia(sr, L, p). The number of proces-

sor positions traversed by the sub-reference, i.e., the length of its external sequence is referred

to as lea(st, L). Correspondingly, the number of memory locations traversed on a particular

processor is referred to as lin(sr, L,p). Another useful quantity the compiler often needs to

compute is the maximum length of any internal sequence of a sub-reference with respect to

a loop, denoted as mlis(sr, L). It is defined as the maximum value of lis(sr, L,p) for all p

belonging to es(sr, L). For the sub-reference sr = (A(i, el), 1/ in Figure 4.2, it can be seen that

1,,,(s,-, L) = 4, and L) = [n14].

Each point in the loop (identified by the value of loop index) at which the sub-reference

crosses a processor boundary in that mesh dimension is called a transition point of the loop

for that sub-reference. We now define some properties describing the relationships between

42

sub-referencesvarying inside the same loop, that help characterize the data movement for that

loop.

Property 1 A sub-reference srx is said to be k-synchronous (k is a positive integer) with

another sub-reference st2, with respect to a loop L, if (i) every transition point of L for st2

coincides with a transition point of L for st1, and (ii) between every pair of consecutive transition

points of L for st2, there are exactly k - 1 transition points of L for srx.

Ezample: In Figure 4.2, the sub-reference (A(i, cx), 1) is 2-synchronous with (B(c2, i),2/,

with respect to the/-loop.

Property 2 A sub-references srx is said to be strictly synchronous with another sub-reference

st2, with respect to a loop L, if (i) Srl is 1-synchronous with st2, with respect to L (i.e., every

transition point of L for srx is also a transition point of L for st2, and vice versa), and (ii) the

coinciding transition points represent the cross-over points between the same processor numbers

in the respective mesh dimensions for those sub-references.

Ezarnple: In Figure 4.2, if/32 were distributed on four processors (rather than two), the

sub-reference (A(i, Cl), 1) would be strictly synchronous with (/3(c2, i), 2), with respect to the

/-loop.

A useful convention adopted regarding the k-synchronous property is that k is also allowed

to be a reciprocal of positive integer. In that case, a statement that st1 is k-synchronous with

st2 is really to be interpreted as conveying that st2 is 1/k-synchronous with st1.

4.2.2 Static Determination of Characteristics

We now present some results that enable determination of the above characteristics of sub-

references at compile time. The expressions obtained pertaining to the traversal of sub-

references help determine the data sizes and the number of processors involved in corresponding

communications. The tests on synchronous properties between pairs of sub-references help iden-

tify the communication primitive that is suitable for implementing the required data movement.

43

All of the resultspresentedin this section are for sub-references of the type single-index

(we shall often use the terms subscript and sub-reference interchangeably). The corresponding

analysis for sub-references of the type constant is trivial, for those of the type mull:iple-index

is based on these results, and for sub-references of the type unknown cannot be done precisely

at compile-time. We shall describe how each of those cases is handled, when we describe the

procedure for estimating communication costs, based on these results.

Traversal of Sub-references

Consider a sub-referencesr ofthe type singXe-index, with subscriptexpressione = _ •jI+/7.

We shallcontinuewith the terminologyintroducedin Chapter 3 (thecorrespondingdimension

Ak isdistributedon Nk processorsin a blocked-cyclicmanner, with a block sizeof bk,and the

loop Lt has a range of rt= ma_x(ft- it+ st,0). The symbolic expressionused forthe estimated

lengthof the externalsequence of sr with respectto Lt is:

1.s(_,-,Lt) = min(N_,,F(I(_I*,'t)/bj,]) (4.1)

The expressionformlis(sr,L#)has alreadybeen shown inChapter 3,under a differentguise.

Ifsr appears in the lhs array referenceof a statement S (and isthe only one among the lhs

sub-referencesvarying in the loop Lt),the maximum number ofinstancesof S (corresponding

to iterationsof Lt) assigned to a singleprocessorisgiven by m3.is(sr,Lt). This isprecisely

what was determined as Ct(S),the contributionterm of loop Lt for the computational costof

statement S. Thus, using Equation 3.2,we have:

mis(_r, LD = ([Z,k/(I,_l**t)J • L(I,_I* ,';)l(Nk • Z,_)J)+

min(LbJ,/(Ic,l *-'t)J, F((I'_I* "t) rood(_,V_:,b_,))/(Io<l* _t)l) (4.2)

Synchronous Properties

We now presentteststo detectthe synchronous propertiesfora pairofsub-references.In order

to prove our resultsregardingthe synchronous properties,we need the followingtwo lemmas.

44

Lemma 4.1 Given any integer x, and positive integers y and z,

Lxl(y* z)J = LLxlyJlzJ

Proof

Let

Let

We have

Now

Hence,

Therefore,

[]

Lemma 4.2

x = q,y+r,

q = qJ * z + r _,

Lx/(y• z)J -- L(q * y + r)/(y • z)J

= Lq/z + r/(y, z)J

= L(q'* z + r')/z + r/(y • z)j

= Lq'+ r'/z + r/(y, _)J

= q' + L(r'* y + r)/(y, _)J

r',y÷r < (tit 1)* y

rl+l < z

r_ ,y+r < z*y

L(e• y + r)/(y, z)J = o

Lx/(u* _)J = q'

= lqlzJ

= LI_lyJlzJ

where 0 < r < y, q and r axe integers.

where 0 _< r_ < z, q_, and r _ are integers.

(since r < y)

(since r' < z)

Given any integer x, and positive integers y and z,

LxxlylJ = Lz:/yaJ _ ixl/(z* yl)J = Lxa/(z* y:)J

45

Proof

LxllylJ = Lx21y2J

LLxl/ylJlzJ = [Lx21y2JlzJ

Lx_l(z,y_)J = LxU(z,y2)J (by Lemma 4.1)

[]

Strictly synchronous sub-references Consider two sub-references srl and st2, correspond-

ing to array dimensions that are distributed in the same manner - blocked or cyclic, and on

an equal number of processors (say, Nk), in case of cycllc distribution. Let their subscript

expressions be el = al * i -t-/_1, and e2 = a2 * i +/72. Let bl and b2 be the block sizes, and

ol and o2 be the offsets of distribution of the corresponding array dimensions. During loop

iteration i, the positions in their mesh dimensions to which the two sub-references get mapped

are [(al * i + #31- 01)/blJ[modNk] and L(a2 * i + _2 - 02)/b2J[modNk] respectively. Clearly,

srl is strictly synchronous with st2, with respect to the/-loop L, if

L(at • i -t- 13t - ot)/btJ - L(a2 • i +/32 - 02)/b2J

The following theorem gives sufficient conditions under which the above equation holds, and

hence, gives sufficient conditions for the strictly synchronous property.

Theorem 4.1 Let srl and sr2 be two sub-references, as described above. The sub-reference

st1 is strictly synchronous with st2, with respect to loop L if either of the following sets of

conditions are satisfied:

• (i)a_/bl = a2/b2, and Ci? (13_- o_)/bl = (_2 - o2)1b2,

or

• (i) bl ----rn • al, (ii) b2 - rn • as, and (iii) L(_ - ol)/a_] - L(_2- o2)1a2],

where m is a positive integer.

46

Proof The first set of conditions implies that

(_1 • i)/b, + (_, - o,)/b, = (_2 • i)/b2 + (/h - o_)/b_,

The condition (iii)from the second set implies that

L(_I - ot)/n'lJ + i = L(_2- o2)/_2J+ i,

=_ L(_I- ol)/_1 + iJ = L(_2- 02)/a2 + iJ,

L(_ * i + _1 - o_)/_aJ = L(_2* i + _2 - 02)/_2J

L(_ * i + _1 - Ol)/(m, al)j = L(_2* i + _2 - o2)/(m • a2)J

ViEI

(Q.E.D. for case 1)

ViEI

L(_ * i + _ - ot)lblJ = L('_ * i + _ - o2)lb2J

(by Lemma 4.2)

(from conditions (i) and (ii))

0

k-synchronous sub-references The conditions we check to see whether srl isk-synchronous

with st2 are obtained in a similar manner, and are shown below:

Theorem 4.2 Let st1 and st2 be two sub-references as described above. The sub-reference srz

is k-synchronous (k being an integer) with st2, with respect to loop L if either of the following

sets of conditions are satisfied:

• (? <_lt>l = k, (_lb_), and (i? (_ - o_)lbl = k, ((_2 - o2)lb_)+ l, whereI is an integer,

or

• (i) bl = m • _1, (ii) b2 = k • m * _9, and (iii) 1(/_1- o_)l_J = k(_2- o_)l_J + m • l,

where m and I are integers, and m > 0.

Proof Omitted, similar to the proof of Theorem 4.1 shown above.

47

Other Methods of Characterization

During the analysis of communication requirements, if the compiler is unable to establish a

k-synchronous property between two sub-references of the type single-index, it often needs

other measures to characterize the relationship between the two sub-references. One such

measure is the speed-ratio, defined as:

speed-ratio(srl,sr2, L) = I(al * b2)/(a2 * bl)] (4.3)

This captures roughly, the "speed" with which the sub-reference st1 crosses processor bound-

aries in the loop L, relative to the sub-reference sr2. This measure is a generalization of the

notion of k-synchronous property, and it may be observed that a k-synchronous property be-

tween two sub-references for a given loop implies a speed-ratio of k.

Boundary-communication The "boundary-communication" is a specialized test performed

between sub-references corresponding to aligned dimensions, and related by a speed-ratio of

one. This test helps detect data movement taking place across boundaries of regions allocated

to neighboring processors. It checks for the following conditions:

1. al/bl = a2/b2.

2.](fll - Ol)/bl - (f12 - o2)/521 __ 1.

If the above conditions are satisfied, the amount of data transfer across the boundary of each

participating processor is estimated as:

bd(srl,sr2,L) = (rl(z, - o,)/(_,, s,)- (z_- o_)/(_2• s,)ll)* (r(_2 • rt)l(Nk • b2)]) (4.4)

where the symbols st, rt, Nk have their usual meaning. The first term, H(_I - ol)/(a_ • st) -

(_2 - o2)/(a2 * st)l] gives the number of elements transferred across a single block of the array

dimension. The second term in the product gives the number of blocks (among those traversed

by the sub-reference st2) that are held by a single processor.

48

do jl - _1_ fl, 81

do j2 = i2, .[2, s2

do jr. = ira, fro, a,_

A(gl,g2,...,gp) = _'(B(hl,h2,...,hq)) (s)

Figure 4.3: Statement requiring communication of data

4.3 Placement of Communication

Consider a statement S shown in Figure 4.3. Prior to the execution of any instance of that

statement, the value of B(hl, h2,. •., hq) has to be sent to the processor owning A(gl, g2,..., gp)

if the two elements are owned by different processors. In the absence of any optimization, the

communication required to implement this data movement for array B is placed just before

that statement. However, that may lead to a serious problem on most multicomputers, where

the start-up cost of sending a message is much greater than the per-element cost. Hence com-

bining messages, particularly those being sent in different iterations of a loop, is an important

optimization goal for most compilers for multicomputers [30, 22, 15]. During the setup pass,

PARADIGM determines the outermost possible level at which communication for each array refer-

ence can legally be placed. Later, other considerations such as regularity of data movement and

exploitation of pipeline parallelism further influence the actual placement of communication.

4.3.1 Moving Communication Outside Loops

The algorithm in Figure 4.4 shows how the compiler determines the outermost loop level at

which communication involving array B in statement S can be placed. The existence of a

flow dependence edge due to array B from S _ to S with a nesting level of k implies that the

values of some elements of B that may be involved in communication are computed in the

loop Lk (the nesting level of a dependence is the innermost loop level with respect to which

49

lraax -- 0

for each dependence into S do

if ((dependence-type == flow) and (dependence due to array B))

S _ = source statement of dependence

determine k = nesting level of dependence

for (l -- k;1 > 1;/- -) do

if 5' and S' belong to same SCC in DGI
break

endif

endfor

Imaz = maz(l, Iraaz)
endif

endfor

Identify the doall loops outside loop L_,,_a=.

Figure 4.4: Algorithm to determine communication level for reference to B in 5'

the dependence is carried, or if the dependence is loop independent, the common nesting level

of the two statements involved in that dependence). Further, if that edge comes from a node

belonging to the same SCC in DGt (defined earlier in Chapter 3), the communication has to be

done within the loop Lt to honor the data dependence. However, if the edge comes from a node

belonging to a different SCC, by distributing the loop over these components, the compiler can

take the communication out of the loop.

PARADIGM infers that communication can be combined with respect to all the loops inside

Lt_a= and with respect to all the doall loops outside Lt,_. In order to ensure this combining,

the compiler has to perform some loop transformations which can be identified by simple exten-

sions to this algorithm. Whenever the source 5,_ of a loop-carried dependence and S belong to

different SCCs in the level-l dependence graph DGt, if I takes a higher value than the eventual

value of lraaz, the loop Lt has to be distributed over the SCCs corresponding to S _ and S to

allow communication to be combined with respect to that loop. Even though communication

has to be placed inside loop Ll,nax, it can be combined with respect to any doall loop outside

Ltm,_x by bringing the doall loop inwards. Note that a_ outer doall loop can be brought inside

Llr_x even if there are intervening loops, and even if the loops are not part of a perfectly nested

5O

doi= 1, n

doj = 2,n

A(i,j) = 9r(A(i,j - 1),B(i,j- 1)) ($1)

B(i,j) = ._(A(i,j),A(i,j- 1)) ($2)
enddo

D(i) = 9C(A(i,n),D(i - 1)) ($3)
enddo

Figure 4.5: Original program segment

(m,_)

(=)

Sl

(=.=). (=.<)

$2

(<) S3

Figure 4.6: Dependence graph for the example program segment

structure. This can be achieved by applying a sequence of the following transformations, which

are always valid:

• Distribution of a doall loop over statements constituting its body.

• Loop permutation [8] (a special case of that is loop interchange) that brings a doall loop

inwards.

The application of these transformations is illustrated by the example shown in Figure 4.5.

The dependence graph for this program segment is shown in Figure 4.6. Consider the process

of determining the level for communication involving array B for statement S1. There is a flow

dependence from statement $2, carried by the j-loop at level 2. Also, $2 belongs to the same

51

doj = 2, n

do/= 1, n

A(i,j) = .T(A(i,j- 1),B(i,j- 1)) ($1)

enddo

doi= 1, n

B(i,j) = _(A(i,j),A(i,j- 1)) ($2)
enddo

enddo

doi= 1, n

D(i) = U(A(i,n),D(i- 1)) ($3)
enddo

Figure 4.7: Transformed program segment

SCC as S1 in DG2. Hence communication has to take place inside the j-loop, and the value of

lma:r, is set to 2. The examination of loops outside the j-loop reveals that the/-loop is a doa11.

Hence the/-loop is brought inside by distribution over the j-loop and $3, foUowed by a loop

interchange with the j-loop. Since the flow dependence to $1 is from a different statement $2,

the i-loop is further distributed over $1 and $2. The transformed program segment is shown

in Figure 4.7.

In general, the loop structure surrounding a statement with array references can finally be

transformed to the form shown in Figure 4.8. All of the loops LI+I through L,_ are those from

which communication can be taken outside (we shall refer to them as type-1 loops), while the

loops L1 through/;t axe those which must have communication taking place inside them due

to dependence constraints (we shall refer to such loops as type-2 loops).

The characterization of a loop as type-1 or type-2 is always with respect to a paxticulax rhs

reference, since it depends on the outermost level at which communication for that reference can

legally be placed. While a paxallelizable loop is always type-1 (or can be transformed to become

type-l) with respect to all rhs references in the statements inside it, an inherently sequential

loop may also be type-1 with respect to a given rhs reference. Throughout the remainder of

this chapter, we shall refer to a loop simply as a type-1 or type-2 loop, where it is clear which

rhs reference is being considered.

52

do jl = ii, fl, 81 (type-2)

do jl = il, fl, 81 (type-2)

(communication for (A(gl,...,gp),B(hl,...,hq))>

do jt+l = i_+l,f_+l,sz+l (type-l)

do j,_ = i,n, f,,, s_ (type-l)

A(gx,g2,...,g,,) =

Figure 4.8: Statement involving communication

4.3.2 Limits on Combining of Messages

While the combining of messages is desirable for amortizing the high start-up costs of com-

munication, it may not always be optimal to place communication at the outermost possible

loop level. One reason for that is a possible reduction of overlap between computations when

messages are combined. For instance, consider the program segment and the associated data

movement shown in Figure 4.9, where A is _stributed by rows. If the messages are combined

for all iterations of the j-loop, each processor sends data to its neighboring processor only after

completing its entire share of computation. A greater amount of overlap is possible between

those computations if the j-loop is stripmlned (corresponding to the dotted vertical lines), and

the communication of values is done between execution of successive strips. Once all the data

partitioning parameters are known, PARADIGM can provide the performance estimates to help

choose an appropriate block size that balances the benefits of combining messages and ex-

ploiting pipeline parallelism [31]. However during the process of selection of data partitioning

parameters, PARADIGM avoids the complexity of adding one more variable (block size of strip-

mining) to the symbolic expressions for estimated performance by giving priority to combining

of messages, and ignoring the possibility of stripmining.

Another situation when it may be better not to combine communication with respect to a

type-1 loop is when that data movement is not "regular enough" (or known at compile-time

53

A

do i = 2, n

doj= l,n

A(i, j) = ... A(i-1, j) ..

enddo

enddo

Figure 4.9: Combining of messages versus exploitation of pipeline parallelism

do/- 1, n

A(i)= _'(B(D(i)))

enddo

Figure 4.10: Statement with irregular data movement

to be regular enough) in the loop. This notion of regularity will be made precise in the next

section. In such cases, the use of collective communication necessarily involves communication

of extra values. Therefore, it may be better to carry out communication inside the type-1

loop, i.e., use repeated calls to the Transfer primitive during different iterations of that loop,

rather than a single call to collective communication primitive for the entire loop. For instance,

consider the type-1 loop shown in Figure 4.10. The use of collective communication would

involve each processor (on which B is distributed) sending the entire section of array B that it

owns to all the processors on which A is distributed. This primitive is carried out only once,

before entering the loop. However, it involves communication of larger amounts of data than

necessary, and also requires each processor to allocate a greater amount of space to receive

the incoming data. The other alternative that we mentioned is to carry out communication

inside the loop. During each iteration, the owner of B(D(i)) is determined, and if it is different

from the owner of A(i), the value of B(D(i)) is communicated using a Transfer operation. Yet

another alternative is to use the run-time compilation techniques developed by Saltz et aJ. [67]

54

and Koelbelet al. [44]. The compiler generates an inspector that pre-processes the loop body

at run-time to determine the communication requirements for each processor.

The best method to use amongst these usually depends on the nature of the problem and

the target machine characteristics. If the given loop itself appears inside another loop and the

values of dements of D do not change inside that outer loop, using the inspector method is likely

to be the best, since the overhead of inspector gets amortized over different iterations of the

outer loop. Otherwise, if the target machine has a large set-up cost for sending messages, and

has enough memory (given the data sizes used) on each node, it may be better to use collective

communication. On a massively parallel machine tackling a large-sized problem, where the

memory limitation on each node is more severe, the use of Transfer operations inside the loop

may be the best, or the only choice.

IdeaUy, a compiler generating communication should choose amongst these alternatives

only afterevaluatingthesetrade-offs,and takingintoaccount the resourceconstraints.For the

purpose of estimationof costs,PARADIGM assumes that communication would be combined

with respectto every type-1loop,even ifthat leadsto communication of some extravalues.

4.4 Identification of Communication Terms

Consider again the two array references shown in Figure 4.8: The compiler analyzes each

pair of sub-references corresponding to aligned array dimensions in those references, and ob-

tains a term representing the cost of communication in that mesh dimension. Each term

gives a "one-dimensional" view of the data movement in a specific dimension. For instance,

in the data movement shown in Figure 4.11, the individual terms corresponding to the move-

ment in the two mesh dimensions are Scatter(m1, 3), and OneToManyMulticast(m2, 3). These

terms are composed to give an overall communication cost estimate of Scatter(m1 • m3, 3) q-

OneToManyMulticast(ml • m2, 3). In this section, we show how terms are obtained for each

pair of sub-references. The next section describes the procedure for obtaining the overall cost

estimates based on these terms.

55

!
_Lmm_m

! I

iemt

Jeoeo u

oum.e I

n i i qi_

Ioooo I

0

D-

I

, D-
I
i

eO--o'"

' 11I
0
..o.o

_-oo.

' 91i
e
...o.

i

(1) (2)

Figure 4.11: Different data movements in the two mesh dimensions

Overview of Algorithm4.4.1

Given the lhs and the rhs reference, the compiler firstmatches pairs of sub-references cor-

responding to aligned array dimensions. If the lhs and the rhs arrays differ in the number

of dimensions, the sub-references corresponding to the "extra" distributed dimensions of one

array are paired up with sub-references corresponding to the "missing" dimensions of the other

array. The "missing" sub-reference is regarded as being of the type cons_anl;. For each pair of

sub-references, the larger of their values of variation-leveZ identifies the innermost loop in

which data movement for that mesh dimension takes place.

The compiler now steps through each of the loops surrounding the given statement, from

the innermost to the outermost loop. For each loop, it identifies the matched pair(s) of sub-

references, if any, for which the value of variation-level is equal to the current loop level.

Depending on whether the current loop is a type-1 or a type-2 loop, the compiler invokes the

appropriate procedure to obtain the term(s) representing the cost of communication in the

corresponding mesh dimension(s). Initially, the compiler assumes that communication would

be placed at the outermost possible level l, determined earlier, as shown in Figure 4.8. Hence,

56

the loops LI+I ...L,_ are regarded as type-1 loops, and all others as type-2 loops. However, as

the algorithm proceeds from inner loop onwards, the analysis for data movement in the current

loop may designate an outer loop previously marked type-1 as a type-2 loop (this shall be

discussed further along with the detailed description of the analysis performed). Therefore at

each step, the compiler has to check whether the current loop is to be regarded as a type-2 or

a type-1 loop.

If there is no pair of sub-references identified in the above step for a given loop, there is no

communication term obtained for that loop. If the given loop is a type-l, the significance of

this case is that any communication taking place for the rhs reference need not be repeated

inside this loop, since the values communicated once (before executing this loop) can be reused.

On the other hand, if it is a type-2 loop, any communication taking place simply gets repeated

inside this loop. The iteration count of the loop only modifies the value of other communication

cost terms in this case. That modification is done during the step performing the composition

of all the individual terms.

Finally, the compiler analyzes the remaining pairs of sub-references that do not vary inside

any loop. For each such pair, both the sub-references are of the type constant. If the elements

corresponding to those sub-references are mapped to different positions in the mesh dimension,

there is a need for Transfer primitive to make up that position difference. A symbolic expression

is obtained for the communication cost in terms of N_ (the number of processors in the mesh

dimension), based on the following simplifying assumption. Any two arbitrary elements along

the given array dimension are assumed to belong to the same processor with a probability

of link. Hence, the probability that a Transfer is needed is 1 - link, and the cost term is

obtained as (1 - 1/Nk) * Transfer(l). This elegantly takes care of the important boundary case

Nk - 1, since the communication cost term does evaluate to zero when the array dimension is

sequentialized.

We now describe the analysis performed by the compiler to obtain communication cost

terms for the pairs of sub-references varying in a loop. For the variation of sub-references in a

type-2 loop, the term represents the data movement taking place in a single loop iteration. For

57

the variation in a type-1 loop, the term obtained represents the data movement for the entire

loop.

4.4.2 Data Movement in Type-2 Loops

Since any communication in a type-2 loop, L, has to be realized with a separate message during

every iteration, the primitive used is Transfer, with a data size of one. The only analysis needed

is to estimate how often the elements corresponding to the two sub-references st1 and st2 are

mapped to different processors. The compiler first checks for the following special cases:

1. Both st1 and st2 are of the type single-indez, and st1 is strictly synchronous with st2,

with respect to L. This implies that there is no interprocessor communication required.

Hence, no communication cost term is returned in this case.

2. Both st1 and st2 are of the type single-indez, and satisfy the boundary-communication test.

In this case, the number of iterations during which a Transfer primitive has to be used is

given by bd(srl, st2, L) * (leli(sr2, L) - 1). The term len(sr2, L) - 1 denotes the number

of processor boundaries across which communication takes place, while bd(srl,sr2, L)

denotes the number of data items that are transferred (in different iterations) across

each processor boundary. The expressions for these terms have been shown earlier in

Equations 4.1 and 4.4 respectively. Thus, the cost term returned is bd(srl, st2, L) •

(les(sr2, L) - 1) • Transfer(l). This is the only case in which a term for communication

in a type-2 loop represents the cost for all the loop iterations, hence this term is marked

for special handling during the composition step.

3. Both srl and st2 have an identical expression. In this case, the elements corresponding

to both the sub-references are expected to be mapped to the same position in the mesh

dimension. Hence, no communication cost term is returned.

In all other cases, the compiler assumes that a Transfer is needed during every iteration

with a probability of 1 - 1/Nj:. Hence, the communication cost term returned is (1 - 1/Nk) *

58

Transfer(I). If there are multiple pairs of sub-references varying in the same type-2 loop, the

above analysis is repeated for each pair to obtain separate cost terms.

4.4.3 Data Movement in Type-1 Loops

The data movements required in different iterations of a type-1 loop can legally be combined.

Therefore, the compiler attempts to recognize the communication primitive that best realizes

the collective movement, and obtains the term(s) representing its cost. The techniques we have

developed allow this analysis to be carried out for arbitrary kinds of sub-references, and for any

arbitrary number of pairs of sub-references varying in a loop. For ease of presentation, we shall

describe different aspects of the analysis separately.

Single pair of varying sub-references

Table 4.2 liststhe communication term(s) obtained ifthere isa singlepairof sub-references

varying in such a loop L. This tableenumerates the casescorresponding to only the "basic"

categoriesof the subscriptsforthe lhn and rhs sub-references.The resultsfor the other cases

(when the two subscriptsofthe type single-£ndex have differentvaluesofvar£at£on-level,

or when one of the subscriptsisof the type multiple-index) are derived in terms of these

results,and are presentedlaterin thissection. The column marked conditionstestedlists

the testsperformed by the compiler to obtain furtherinformationabout the nature of data

movement. The entry reductionop representsthe testto see ifthe rhs referenceisinvolvedin

a reductionoperation(such as addition,max, rain)insidethe loop.

The casecorrespondingto both the sub-referencesbeing of the type s£ngle-£ndex isper-

haps the most commonly occurringpattern insidevariousloops in the scientificapplication

programs. Ifthe two sub-referencessatisfyone of the fivetestsshown in the table,itmeans

thatthe processorscan be partitionedintomutually disjointgroups overwhich the communica-

tionprimitivesindicatedby the costterms may be carriedout inparallel.Figure4.12shows the

differentkinds ofdata movement correspondingtothosecases.The term IDM(ra) (internalized

59

LHS (sri) RttS (sr2) Conditions Tested Communication Term

single-index constant default OneToManyMulticast(1,1Qs(srl, L))

constant single-index 1. reduction op Reduction(l, les(sr2, L))

2. default Gather(mlis(sr2, L), les(sr2, L))

single-index single-index 1. srl strictly synch sr2

2. srl 1-synch sr2

3. boundary-commn.

4. srl k-synch sr2, k > 1

5. sri k-synch sr2, k < 1

IDM(mlis(sr_, L))

> 1), Transfer(miis(sr2, Z))
(i) (lv > 1), Shift(hal(st,, st2, Z))
(ii) IDM(miia(sr2, L) - bd(srl, sr , L))
D-Scatter(mils(st2, L) / k, k)

D-Gather(mlis(sr2, L), 1/ k)

Table 4.2: Communication terms for a pair of sub-references varying in a type-1 loop

data movement of m elements) by itself does not represent any communication cost, it affects

the data sizes of other communication cost terms during the composition step, as shall be dis-

cussed later. The symbol D-Scatter represents a Scatter operation over a "different" group, i.e.,

a group that does not include the source processor sending data values. A D-Scatter operation

involves data being sent to p other processors, rather than p - 1 (this distinction is important

for accuracy when p takes a small value). Thus, the term D-Scatter(m, p) is simply short-hand

for the following two terms: (i) (NI > 1) • Transfer(m), and (ii) (NI > 1) • Scatter(m, p), where

NI is the number of processors on which the aligned array dimensions are distributed. The

term D-Gather(m, p) is defined in a similar manner.

If none of the five tests indicated in the table are satisfied, the compiler computes the

value of npead-ra%io(srl, sr_, L) using Equation 4.3. Similar to the last two entries for the

k-synchronous property, a D-Scatter or a D-Gather term is used depending on the whether the

value of speQd-ratio is greater than or less than one. However, in this case, the Scatter or

the Gather operations corresponding to different groups do not take place entirely in parallel,

since there is an overlap of processors in those groups. This overlapping between groups, and

the resulting contention during the process of communication is modeled by multiplying each

of those terms (represented by D-Scatter or D-Gather) by a factor of two.

6O

N

m

1

=======.=_ .========._

-=======-=-I

2 3

_ I_=====m=m _mm=m==.=

_ t=======mm= _=mm======

4 5

Figure 4.12: Data movements for sub-references of the type single-index

Multiple pairs of varying sub-references

The compiler analyzes all of the sub-references varying in a loop together, to infer the rela-

tionship between simultaneous traversals of those sub-references in different mesh dimensions.

Table 4.3 presents some of the communication cost terms when there axe two pairs of sub-

references varying in a loop L. The unnumbered properties listed under the conditions tested

column axe those which must be satisfied, before an appropriate cost term is chosen, based on

the numbered condition.

Some of the terms used in the table need to be explained. The function fv chooses the

"faster-varying" sub-reference between two given sub-references. Stated more formally, if a

sub-reference sl is k-synchronous with s2 (with respect to L), fv(sl, s2) is set to sl if k _ 1,

and otherwise to s2. The symbol k,n appearing in various cost terms refers to the value of

max(kl,k2). The symbols N! and Ns refer to the number of processors in the two mesh

dimensions corresponding to the "faster-varying" and the "slower-varying" rhs sub-references

respectively.

61

LHS RHS Conditions Tested Communication Term

single-index (sl)

single-index ($3)

single-index (Sl)

single-index (s3)

single-index (sl)

constant (s3)

single-index (Sl)

single-index (S3)

single-index (Sl)

constant (s3)

constant (sl)

constant (s3)

single-index (s2)

constant (s4)

single-index (s2)

single-index (s4)

single-index (s2)

single-index (s4)

constant (s2)

constant (s4)

constant (s2)

single-index (s4)

single-index (s2)

single-index (s4)

sl kvsynch s2,

s3 krsynch s2,

sl k3-synch s3.

i. maz(kl, k2) > i

2. max(kl,k2) = 1

3. maz(kl, k2) < 1

Sl kx-synch s2,

s3 k_-synch s4,

sl ka-synch s3,

s2 k4-synch s4.

1. sl strictly synch s2,

s3 strictly synch s4.

2. maz(kl,k2) > 1

3. maz(kl,k2)= 1

4. maz(kl,k2) < 1

Sl krsynch s2,

sl krsynch s4,

82 k3-synch s4.

I. max(khk2) > i

2. maz(kt, k2) = 1

3. maz(kl,k2) < 1

sl k-synch s3

sl k-synch s4.

1. k>l

2. k=l

3. k<l

s2 k-synch s4

1. reduction op

2. default

D-Scatter(mlis(s2, L)/krn, kin)

(Nf > 1) * Transfer(mils(s2, L))

D-Gather(mils(s2, L), 1�kin)

IDM(mlis(fv(s2, s4), L))

D-Scatter(mlis(fv(s2, s4), L) / k, k)

(N l > 1) * Transfer(mlis(fv(s2, s4), L))

D-Gather(mlis(fv(s2, s4), L), 1/ k)

D-Scatter(mlis(fv(s2, s4), L)l km,krn)
(N! > 1) * Transfer(mlis(fv(s2, s4),L))
D-Gathe (is(v(2, s4),Z), i/k)
(i) (i - i/iV,) • Trmnsfer(1)

(ii)0 neToM azlyMulticast(i,

D-Scatter(ml is(s4, L) / k, k)

(N! > 1) * Transfer(mlis(s4, L))

D-Gather(mlis(s4, L), 1/ k)

(i) (1 - 1IN.) * Transfer(m)

(ii) Reduction(i, aes(fv(s2, s4), L))

(ii) D-Gather(mlis(fv(s2, s4), L),

los(fv(s2, s4), L))

Table 4.3: Communication terms for two pairs of sub-references varying in a type-1 loop

62

Intuitive Explanation Most of the entries in the table correspond to the faster-varying sub-

reference between the lhs sub-references pitted against the faster-varying sub-reference between

the rhs ones, and selecting a D-Scatter, D-Gather, or Transfer term depending on whether that

lhs sub-reference varies at a faster, slower, or the same rate as the rhs sub-reference. (These

results can thus be extended to handle any arbitrary number of pairs of sub-references varying

in a loop). The only entries that are different correspond to the cases where all of the lhs or

the rhs sub-references are of the type constant. In those two cases, the appropriate choices

of communication primitive are Reduction/Gather, and OneToManyMulticast respectively. In

the first set of cases, the unnumbered conditions ensure that all the processors in the two mesh

dimensions can be partitioned into mutually disjoint groups over which the indicated primitives

can be carried out in parallel. In fact, the conditions tested in all of those cases can be seen

as equivalent, if one observes that a sub-reference of the type constant is always (trivially)

k-synchronous with another sub-reference of the type single-index.

If the given sub-references do not satisfy the conditions shown in the table, the compiler

first selects the lhs sub-reference with the higher speed-ratio, and similarly, the faster varying

rhs sub-reference. Now, the speed-ratio is determined for those two sub-references, and the

communication cost term obtained, as described earlier for the case of a single pair of sub-

references varying in the loop.

Example Consider the example shown in Figure 4.13, where both the arrays A and B are

distributed in a blocked manner on a mesh with N1 x N2 processors. Depending on the relative

values of N1 and N2, the best choice of communication primitive may be Scatter, Transfer,

or Gather. It is not possible to determine the appropriate communication cost term just by

analyzing the two pairs of sub-references individually. For the cases N1 = 4, N2 = 2, and

N1 = 2, N2 = 4, Figures 4.14 and 4.15 show the use of parallel Scatter and Gather primitives

respectively, over groups of 2 processors each. As shown in Table 4.3, the choice of commu-

nication cost term is governed by the test for k-synchronous property between sub-references

(A(i, cl), 1), and (B(c2, i), 2). In those two cases, (A(i, Cl), 1) is determined to be 2-synchronous

and 1/2-synchronous, respectively, with (B(c2, i),2), with respect to the /-loop. Hence, the

63

doi= 1, n

A(i, cx) = .T(B(e2, i))
enddo

Figure 4.13: Variation of multiple pairs of sub-references in a loop

Cl A n 1 B n

Figure 4.14: Choice of D-Scatter term for the given example

compiler chooses the terms D-Scatter(m/4], 2) and D-Gather(rn/4], 2) respectively in those

cases.

Cyclic distributions

All of the analysis we have described above is valid for both kinds of array distributions,

blocked and cyclic. For cyclic distributions, however, another condition is added to the tests for

regularity of data movement. For every sub-reference with a subscript of the form e = az *jr +/31,

the compiler checks if bz is a multiple of az * st, where bz is the block size of distribution of the

c A n 1

%', I I

-- "l ----i---- i -m"

_ll I I

,"-.J :
...._ n

B n

i | i

J | :/f ,t
I,' ',/I
---r-Tm-_--

i/ i i

I ! !

Figure 4.15: Choice of D-Gather term for the given example

64

givendimension, and sl is the stride of the loop L_. The satisfaction of this condition ensures

that the data elements involved in any collective communication corresponding to the given sub-

reference can be accessed on the local memories of involved processors with a constant stride.

Otherwise, the compiler uses cost terms corresponding to communication with a degraded

performance.

Different/multiple loop indices

When the subscripts corresponding to a matched pair of sub-references involve different loop

indices, or when one of the subscripts is of the type multiple-index, one simple way to analyze

the data movement in terms of our earlier results would be to "freeze" (i.e., regard as type-2)

all relevant loops except for the innermost one, for the purpose of analysis. This would involve

not combining communication with respect to the frozen loops, and treating the corresponding

loop indices as constants. PARADIGM uses an extension of this idea, with tiling [80] instead of

freezing of one of the outer type-1 loops, so that communication may be combined with respect

to at least the tiles of that loop.

Sub-references with different loop indices Let us first describe the analysis for a pair

of sub-references of the type single-index, but with different values of variation-level.

Consider sub-references 8rl and 8r2 with subscript expressions of the form el = _1 * jr + _31,

e2 - _2 * J,_ + ;32, where l > m. If L,n is a type-2 loop, then st2 is regarded as a sub-reference

of the type consl;ant, and the data movement is analyzed for loop L_ in a normal manner.

However, if L,_ is a type-1 loop, it is assumed to be tiled suitably by the compiler. (The

compiler generating communication would tile it such that the starting points of the tiles are

precisely the transition points of the loop L,_ for the sub-reference st2). In the context of this

thesis, we shall limit our discussion to just the part dealing with cost estimation.

The value of j,_ is regarded as a constant for the purpose of analysis of communication

requirements, as shown in Table 4.2. However, the cost term obtained is modified in the

following manner to model the effect of tiling of the loop L,,. There are two cases:

65

.

.

The sub-reference sr2 appears on the rhs: The data size of the cost term is multiplied

by mlis(sr2, L,_) to model the effect of combining of communication with respect to the

tiles of the loop Lr_. Further, the term itself is multiplied by les(sr2, Lm) to account for

the repetitions corresponding to the number of tiles. In fact, in this case, it is known that

the cost term obtained initially is OneToManyMulticast(1, les(srl, Ll)). It is changed to

les(sr2, L,,) * OneToManyMulticast(mlis(sr2, L,n), les(srl, Li)).

The sub-reference st2 appears on the lhs: The cost term obtained is multiplied by

les(sr2, Lm) in this case too. However, the data size of the original term is left un-

changed (the data corresponding to the rhs sub-reference is re-used in different iterations

that are part of the same tile).

Some additional analysis is required when there other pairs of sub-references that vary

inside the loop Lm. Consider another pair of sub-references sr 3 and st4, both of the type

single-index with a variation-level of m. This time, the analysis proceeds along the lines

of that shown in Table 4.3. The compiler checks for the k-synchronous property between st2

and st3, and between st2 and st4, with respect to L_n. Tiling is used only if the k-synchronous

property holds between each of the above pairs. The fastest-varying sub-reference among st2,

st3, and st4 is selected to determine the tile size. The communication cost term is now modified

using the method shown above. The following example illustrates this process.

Example Consider the statement and the associated data movement for a 4 x 2 mesh shown

in Figure 4.16. The first pair of aligned dimensions have subscripts i and j varying in different

loops. The j-loop is tiled, and j is regarded as a constant for the purpose of obtaining the initial

term, OneToManyMulticast(1,4). There is another pair of sub-references varying in the j-loop

(L1). The sub-reference <B(j,j), 1> is 2-synchronous with both (B(j,j), 2> and <A(i,j), 2>, with

respect to the j-loop. Hence, the tile size is set to mlis({B(j,j), 1), L1) -- rn/4]. The number

of tiles is given by les(<B(j,j), 1/, L1) = 4. Therefore, the communication term is changed to

4 • OneToManyMulticast(In/4], 4).

66

doj = 1,r*
doi= 1,n

A(i,j) = B(j,j)
enddo

enddo

Figure 4.16: Example to illustrate tiling of outer loop

Sub-references with multiple loop indices For all the loops whose indices appear in a

sub-reference of the type rmltiple-index, the compiler first determines those that are type-1

loops. If there are more than two such loops, the sub-reference is handled the same way as one

of the type unlmown. If there is only one such loop, the indices corresponding to the type-2

loops are regarded as constants, and the sub-reference reduces to one of the type single-index.

Thus, in the following discussion, a sub-reference of the type raull:iple-index has exactly two

indices corresponding to type-1 loops in the subscript expression.

Given such a sub-reference srl in a pair, if the other sub-reference st2 is of the type consl:an_

or unkno_n, then the cost term is obtained by regarding srl as of the type unlmo_ra (the analysis

for dealing with a sub-reference of the type unknown is discussed next). Essentially, special

analysis for srl is applied only when sr2 is of the type single-index or mull:iple-index as

well. The handling of these cases is again based on the idea of tiling.

Let the current loop level being examined be I. Consider first the case of srl with subscript

expression el = al*jt+a_*j,,_+31 (I > m), and st2 with e2 = a2*jt+/32. Similar to the earlier

case of sub-references with different loop indices, j,_ is regarded as a constant for the purpose

of obtaining an initial cost term, and the term obtained is modified to model the effect to tiling

67

LtlS I RttS Communication Term

unknown constant OneToManyMulticast(1, Nt)

constant unknown Gather([n/Nz], Nt)

unknown single-index
multiple-index ManyToManyMulticast([n/Nz], Nz)

unknown

single-index unknown ManyToManyMulticast ([n/Nz], NI)

multiple-index

Table 4.4: Collective communication for sub-references involving unknowns

of loop L,_,.Consider now the case of both 8rl and st2 being of the type multiple-index,

with subscriptexpressionsel = al *jz+ a_l* Jm + _I, and e2 = a2 *jz+ aS *j_n+ f12(ifthe

two sub-referencestogetherinvolvemore than two indicescorrespondingto type-1loops,they

are again handled likesub-referencesof the type unknown). The compiler obtains the value

of speed-ra'c£o(srl,st2,Lm), and determines the tilesizeof Lm based on the fastervarying

sub-reference.Again,communication costterm isfirstobtained assuming jm isa constant,and

then modified to account fortilingofLm.

Sub-references of the type unknown

If eitherof the pair of sub-referencesvarying in a type-I loop is of the type unknown, the

compiler in unable to inferthe precisepatternof data movement in that loop. As discussedin

Section4.3,thereisa trade-offin thiscasebetween using collectivecommunication with larger

data sizeand fewer messages,or using repeatedTransferswith potentiallymore messages,but

smalleramounts of data being communicated. For the purpose of estimatingcommunication

costs, PARADIGM currentlyassumes that the compiler would use collectivecommunication.

Table 4.4shows the costterm obtained forthe loopwhen atleastone of the sub-referencesisof

the type unknolm. In the entriesfor costterms,n denotesthe sizeof the correspondingarray

dimension,and Nz denotes the number ofprocessorsinthe mesh dimension. In thiscase,there

isno specialanalysisneeded formultiplepairsofsub-referencesvaryingin a loop. Those pairs

are analyzed independently,and the resultingterms are composed in the normal manner.

68

Term1 Term2 Resultant Term

IDM(ml) IDM(m2) IDM(ml • m2)

Gather(rnl, px) Gather(m2, P2) Gather(rnl * m2, Px * P2)

IDM(ml), IDM(m2), IDM(ral * rrt2), (N1 > 1) Shift(c1 * m2),

(N1 > 1) Shift(c1) (N2 > 1) Shift(c2) (N2 > 1) Shift(c2 * ml),

(gl > 1 & N2 > 1) Shift(el • e2)
Reduction(rnl, Pl) Reduction(m2,/_) Reduction(m1 * ms, Pl * P2)

ManyToManyM'cast(ml,pl) ManyToManyM'cast(m2,/_) ManyToManyM'cast(ml • m2,pl * P2)

0neToManyM'cast(ml,pl) 0neToManyM'cast(m2,p2) OneToManyM'cast(ml • rn2,pl * p2)

(1 - 1/pl) • Transfer(m1) (1 - 1/_) • Wr_sfer(m2) (1 - 1/(pl *p2))*Wransfer(m_• ._)

4.5

Table 4.5: Combining of terms with identical communication primitives

Composition of Communication Terms

Once the communication terms corresponding to all the mesh dimensions have been obtained,

they axe composed together to obtain the overall estimate of communication cost. This process

consists of the following steps: (i) combining terms with the same communication primitive, (ii)

determining the order in which different primitives are invoked, and modifying the data sizes

of the terms suitably, and (iii) multiplying the terms by the expected number of repetitions of

that communication during the program.

4.5.1 Communication Terms with Same Primitive

The terms involving the same primitive in different mesh dimensions are combined a.s shown

in Table 4.5. The combined term represents the primitive carried out over a bigger group,

spanning multiple mesh dimensions.

4.5.2 Ordering of Primitives

Since the primitives corresponding to different terms implement the data movement in distinct

mesh dimensions, they can legally be composed in any order. However, the order in which

they axe invoked is important because the position of each primitive affects the message sizes

69

do i= 1, n

A(n,n) = .Y'(B(i, 1))
enddo

Figure 4.17:Statement requiring Gather and Transfer in different dimensions

and the number of processors involved (in parallel) in subsequent primitives. It is desirable to

obtain an ordering that leads to fewer processors being involved and smaller messages handled

by each processor, but sometimes, there is a trade-off between the two.

For example, consider the statement shown in Figure 4.17, where the arrays A and B are

distributed in an identical manner on a 2-D mesh. The primitives required are: Gather in the

first dimension, and Transfer in the second dimension. Figure 4.18 illustrates the two possible

orderings for a 3 x 3 mesh. If Gather is invoked first, it is carried out with a data size of n/3

words, over 3 processors, followed by a single Transfer of n words of data. If this ordering is

reversed, there are 3 parallel Transfers that take place, each involving n/3 words, followed by

a Gather operation, also with a data size of n/3 words, over 3 processors.

The second ordering in the above example leads to the use of parallelism in implementing

communication, and would yield better performance if there were no other communications

being carried out on the mesh of processors. This suggests resolving the trade-off in favor

of reducing the message sizes handled by processors. When there is no trade-off involved, the

compiler should use an ordering that reduces the message sizes and/or the number of processors

involved. These considerations suggest the ordering shown in Table 4.6.

Determination of message sizes

The data size associated with each communication term initially represents just one "edge" of

the overall volume of data being communicated. In accordance with the ordering of primitives

shown above, the compiler determines the actual message size for each primitive corresponding

to a communication term.

7O

GaZer

! !

I I
I I

-'- I I
-I" I"....

I

,!
!

!
!
!,

Transfer

i J-._.
I I .--:

.... I= I"....
I I
I I
I I

I I
..... i,=.... i,=....

I I
I I
I I
I I

2

Transfer

" I !

] .,....2 ° ._| 0 '.w =.1
l l

l I
l I

..... r".... I=
l l

D I "-_"_I I_''°

I I
..... I".... I"....

I I
I I

[] ',

GaZer

| I_'-I

..... F'-- -r"

I ||'O

1 2

Figure 4.18: Possible compositions of Gather and Transfer

I Rank]

1

2

3

4

5

6

Primitive I Message Size No. of Processors

Reduction reduced reduced

Scatter reduced increased

preservedShift, Transfer

OneToManyMulticast preserved increased

Gather increased reduced

ManyToManyMulticast increased increased

preserved

Table 4.6: Ordering of communication primitives for composition

71

doj = 1, n

doi= 1,n

a(i, j, = 7(B(i,
enddo

enddo

Figure 4.19: Example of composition of communication terms

First,the compiler determines the product of individualdata sizesassociatedwith each

communication term, includingan IDM term. This product representsthe complete volume

of data to be communicated, and servesas the message sizefor each term corresponding to

any of the firstfiveprimitiveslistedin Table 4.6.(Note that the data sizesused in terms for

the Reduction and Scatterprimitivesalreadyreflectthe "reduction"in message sizecaused by

those primitives,as can be seen from the entriesshown in Tables 4.2 and 4.3). In case there

are terms presentforboth Gather and ManyToManyMulticast primitives,the data sizeforthe

ManyToManyMulticast ismultipliedfurtherby the number ofprocessorsshown in the Gather

term, to account forthe increasedamount of data participatingin thatprimitivefollowingthe

Gather operation.

Example Consider the statement shown in Figure 4.19, where the arrays, A and B are

distributed in an identical manner on a N1 x N2 x N3 mesh. The communication terms obtained

are: IDM(Fn/N1]), OneWoManyMulticast(1, N2), and (1- 1/N3)* Transfer(l). These terms are

composed together to give the communication cost estimate as (1 - l/N3) * Transfer(Fn/N1]) +

0neWoManyMulticast (Fn/ N1] , N2).

4.5.3 Number of Repetitions

The sequence of communication primitives implementing the data movement for the given rhs

array reference is placed at a certain level l, as shown in Figure 4.8. This communication is

repeated during various iterations of the surrounding type-2 loops, L1 through Li. The effect of

various conditionals in the program that influence the flow of control to the given statement is

72

modeledby the reaching probability p(S). Hence, the compiler multiplies each communication

cost term by p(S) * (II_=l nk), where nk represents the iteration count of the loop £k- As

we had noted earlier, a boundary-Transfer term (corresponding to boundary-communication

in a type-2 loop) is treated in a slightly different manner. Such a term already represents

the communication cost for all iterations of the given type-2 loop. Hence, the product shown

above with which that cost term is multiplied, is modified to exclude the iteration count of the

corresponding type-2 loop.

The above analysis assumes strict sequentiality in the process of carrying out communication

inside the type-2 loops. In practice, the generation of messages may sometimes get pipelined

over different iterations of some type-2 loop(s). For an important case, we now present an

algorithm to detect if communication would be overlapped during different iterations of a sur-

rounding type-2 loop Lk-1, and obtain better cost estimates if there is an overlap. This special

case corresponds to boundary communication taking place during a type-2 loop £k. We believe

that any generalizations of this analysis would be helpful in refining the process of estimation

of communication costs.

Detection of Pipelining

Consider a pair of sub-references st1 and sr2 with subscript expressions el = al * jk + j31, and

e2 -- a2 * jk + 82, such that the corresponding communication term is a boundary-Transfer.

Let the rhs reference be to an array A, and the corresponding dimension Ak, be distributed

in a blocked manner with a block size of b2. If sr2 is the only sub-reference in the rhs array

reference varying in loop £k, the following algorithm determines whether communications are

pipelined during different iterations of Lk-1.

1. Examine all dependence edges due to A coming into the given statement from statements

inside Lk-1. Let (dl,d2,...,dm),(m >_ k) denote the direction vector associated with

such an edge. If for every edge, either dk - "-', or all dependences corresponding to

that edge have a constant distance vector, conclude that pipelining takes place.

73

2. If pipelining is detected, for all backward flow dependences (flow dependences in the ">"

direction) at level k examined in Step 1, determine the maximum dependence distance

at level k, and call it bdistk. If there is no backward flow dependence at level k, set the

va_ue of bdistk to O.

In case of pipelining, the precedence constraints indicate that communications for successive

iterations of the loop Lk-1 may be started after waiting for those of bdistk + 1 iterations of

Lk (corresponding to the previous iteration of Lk-1) to finish. The only resource constraint

assumed is that a processor can participate in no more than one communication primitive at a

time.

The various communication cost terms for the given reference are modified as follows. For

the sake of illustration, let us ignore all loops outside Lk-1, and let M1 the loops inside Lk

be type-1 loops. Consider a cost term T1 corresponding to data movement in a type-1 loop.

Without considering the overlap, the contribution of this term to the overall cost estimate

(ignoring the conditionals and the loops outside L_-I) would be nk-1 * nk * Tt. The term

corresponding to the Transfer taking place in Lk is of the form ¢f • (r/- 1) • T2, where _ =

bd(srl, st2, L), _7=].es(sr2, L), and T2 = Transfer(m). The estimate obtained for this term

(without considering the overlap) would be nk-1 ._.(r/-1).7"2. With the detection of pipelining,

these estimates are modified as follows:

. The cost estimate of the terms corresponding to data movement in type-1 loops is changed

from nk-1 * nk • T1 to (n_ + max(kb2/(l_2l * sk)/, bdistu + 1) * (nk-1 - 1)) * T1.

Explanation The communications associated with the inner loop Lk for the first

iteration of Lk-1 see a full latency of nk*1'l. Due to precedence constraints, each successive

iteration of Lk-t contributes to a further latency of at least (bdistk + 1) • T1. Consider

now the resource constraints. Each processor along the mesh dimension traversed by

Lk participates in [b2/(la2[* sk)l of those communications in a single iteration of Lk-_

([b_/(la_l * 8k)J represents the number of iterations of L_ that cover a distributed block of

Ak,). The resource constraints dictate that each processor has to complete its participation

in all those communications associated with an iteration of Lk-1 before starting one for

74

do j = 2, nl
do i = 2, n2

A(i) = _(A(i- 1))

C(i,j) = 9r(B(i,j), A(i))
enddo

enddo

(sD
(s2)

Figure 4.20: Example to illustrate pipdlining

the next iteration of Lk-x. Thus, each of the remaining nk-1 - 1 iterations of that loop

contributes to a latency of max(bdistk + 1, Lb2/([a2[* sk)J) * Tx.

2. The cost estimate of the term corresponding to Transfer in the loop Lk is changed from

nk-1 ,_, (r/- 1)*:/'2 to 6, (r/- 1),T2+max(8, [($*(bdistk+ 1)* 1_21' 8k)/b2l)*(nk-a - 1)*T2.

Explanation For the first iteration of Lk-1, the full latency corresponding to all

6 • (r/- 1) Transfers taking place during loop Lk is seen. For the remaining nk-1 - 1

iterations of Lk-1, the resource constraints dictate that each processor has to complete

all of its _ Transfers associated with one iteration of Lk-x before starting those for the

next iteration. Also, precedence constraints require that the processor has to wait for the

Transfers taking place during the bdistk+ 1 iterations of Lk (corresponding to the previous

iteration of Lk-1) to finish. These bdistk + 1 iterations of Lk involve approximately

L(_ • (bdistk + 1) • [a2[• sk)/b2J Transfers.

Consider the statement S1 shown in Figure 4.20. Let N1 denote the number of processors

over which the array A is distributed. The communication term associated with sub-reference

(A(i- 1), 1) is (N1 - 1),Transfer(I) (using the terminology described above, a2 = 1, sk = 1, 6 =

1, rI = N1, b2 = In�N1]). Without taking pipelining into account, the overall communication

cost estimate for the reference A(i - 1) would be na * (N1 - 1) • Transfer(l).

Let us consider the application of the algorithm described above to this case. All of the

dependence edges involving array A do satisfy the conditions of Step 1, and the algorithm

determines that pipelining takes place. There is no backward flow dependence at level 2, hence

75

bdist2 is set to 0. The modified procedure now estimates the communication costs for the given

reference to be (nl - 1 + N1 - 1)* Transfer(i), rat her than a conservative nl * (N1 - 1) • Transfer(1).

76

CHAPTER 5

DATA DISTRIBUTION PASSES

One of the basic features of our approach to data partitioning is the decomposition of this

problem into a number of sub-problems, each dealing with a different kind of distribution

parameter for all the arrays. These sub-problems are solved in different passes in PARADIGM.

An overview of the system was given in Chapter 2. In this chapter, we present details on each

of those passes.

As shown in Figure 5.1, each data distribution pass is logically composed of three modules,

the detector, the driver, and the solver. The detector is a complete pass through the

program in which the compiler detects the need for imposing a specific kind of constraint on

the distribution of arrays. The compiler looks for conditions in various computations that

clearly suggest that better performance will be obtained if the distributions of the referenced

arrays satisfy a certain property.

Given that a constraint is to be recorded, the next task is to obtain the quality measure

of that constraint. Depending on whether the constraint affects only the communication costs

or computational costs, or both, the driver invokes the appropriate cost estimator(s) for this

purpose. This seemingly simple task is complicated by the fact that performance estimation

requires complete information about the data partitioning scheme, which is not available at

this stage. Therefore, the driver module has to specify some appropriate, default values for

data distribution parameters that are unknown when the given pass is being run. The extent

of data partitioning information available to the compiler increases during successive passes.

77

I De_cmr J

I v°r

I Solv°rJ

__ CommunicationCost Estimator J
__ Computational 1Cost Estimator

Figure 5.1: Structure of a data distribution pass

Hence, the use of separate passes allows the data distribution decisions taken during the later

passes to be guided by more accurate quality measures.

Once all the constraints relevant to a given distribution parameter, and their quality mea-

sures have been recorded for the entire program, the solver determines the value of that

parameter for all the arrays. Essentially, the solver obtains (an approximate) solution to

an optimization problem, where the objective is to minimize the execution time of the target

data-parallel program. The optimization process relies on the resolution of any conflicts be-

tween constraints on the basis of their quality measures. That is why quality measures are

defined carefully in our approach to capture the performance implications of the corresponding

constraints.

We now describe the design of each of the four passes in which decisions are taken on different

aspect of the partitioning scheme, namely, (i) alignment of array dimensions, (ii) method of

partitioning (blocked/cyclic), (hi) block sizes of distributions, and (iv) number of processors on

which each array dimension is distributed.

78

5.1 Alignment of Array Dimensions

The align pass identifies the constraints on alignment among various array dimensions, and

groups those array dimensions into classes that would be mapped to the same processor-mesh

dimension. In the special case when the maximum dimensionality of any array in the program

(and hence the dimensionality of the virtual processor mesh) is one, the problem becomes trivial,

as all array dimensions are mapped to the same mesh dimension. The problem in its general

form was first discussed and formulated in graph-theoretic terms by Li and Chen [48]. The idea

of conformance preference, introduced by Knobe et al. [41] in the context of SIMD machines is

also similar, but directed towards individual array elements instead of array dimensions.

We use the Component A_inity Graph (CAG) framework [48] for the alignment problem.

The CAG constructed for the program has nodes representing dimensions of arrays. For every

constraint on the alignment of two dimensions, an edge having a weight equal to the quality

measure of the constraint is generated between the corresponding two nodes. Finally, the

compiler solves the component alignment problem, which is defined as partitioning the node set

of the CAG into D (D being the maximum dimensionality of arrays in the program) disjoint

subsets such that the total weight of edges across nodes in different subsets is minimized. Each

subset identifies the array dimensions that axe to be mapped to the same mesh dimension. The

weights on edges across the nodes belonging to different subsets denote communication costs

that should be avoided if possible. There is an obvious restriction on the above partitioning,

that no two nodes corresponding to the same array can be in the same subset. Our main

contribution to this specific problem lies in the method of obtaining edge weights that reflect

the communication costs saved by aligning two array dimensions.

5.1.1 Detection of Constraints

The detection of alignment constraints between array dimensions is quite straightforward. The

compiler performs a pairwise analysis of the lhs array reference with each rhs array reference

in every assignment statement inside a loop. The rhs references corresponding to the same

79

doj = 1, n

doi= 1, n

A(i,j) = _'(B(j, 3 • i))
enddo

enddo

Figure 5.2: References suggesting alignment constraints

array as the lhs array are ignored in this analysis. The compiler scans through the information

kept on the subscript expressions for both the references. The presence of a pair of subscripts

(one each from the lhs and rhs references) of the type single-index, and with the same value

of vaxiation-level suggests an alignment constraint on the corresponding array dimensions.

For example, the program segment shown in Figure 5.2 leads to alignment constraints being

recorded for A1 and B2, and for A2 and B1.

The significance of checking for the above condition is that in such cases, the alignment

of the two dimensions can help save a great deat deal of communication costs. Normally, the

easiest way to eliminate communication represented by a pair of subscripts is to sequentialize the

corresponding dimensions, but that also implies giving up on parallelism. The above condition

represents a case where even if those dimensions are partitioned on more than one processor,

their remaining distribution parameters can be chosen such that interprocessor communication

is reduced, or eliminated completely. In the above example, communication can be eliminated

by further choosing identical distributions for A2 and B1, and distributions that give A1 thrice

the block size of B2 but are identical in other regards (blocked/cyclic).

There may be situations when there are multiple candidates for alignment with a given

dimension. For example, in the statement shown in Figure 5.3, either of A1 or A2 may be

chosen for alignment with D1. The compiler arbitrarily picks one of those dimensions for

alignment. In such cases, the process of determining quality measures usually takes care of

"reducing" the importance of those constraints. In the above example, the compiler would end

up assigning a weight of zero to the edge corresponding to that alignment constraint.

80

do i= 1, n

z)(i) = 7(A(i, i))
enddo

Figure 5.3: Multiple candidates for alignment

5.1.2 Determination of Quality Measure

Given an edge corresponding to the alignment constraint between two array dimensions, the

method of quality measure determination should supply a weight to that edge that reflects the

extra communication cost incurred if those dimensions are not aligned. Unfortunately, even

with the availability of a communication cost estimator, there is no satisfactory solution to

this problem in general. Consider two arrays A and B with m and n dimensions respectively,

and an alignment constraint between dimensions Ai and Bj, 1 < i < m, 1 < j < n. The

communication cost can only be estimated corresponding to a given mapping of the array

dimensions to mesh dimensions. For arbitrary values of rn and n, we cannot identify two

unique alignment configurations under which the communication costs may be estimated and

compared to determine the penalty in case Ai and Bj are not aligned. Exhaustively enumerating

all possible cases will only add to the complexity of the problem, and will not be feasible.

We overcome this difficulty in PARADIGM by solving the following approximate problem: for

any pair of references, the alternate alignment configurations evaluated are those corresponding

to the distribution of only two dimensions of each array at a time. We introduce the notion of

primary and secondary pairs of dimensions for this purpose. Given a pair of array references,

two array dimensions are said to form a primary pair if there is an alignment constraint on those

dimensions. The dimensions are referred to as forming a secondary pair if there is no alignment

constraint between them, but they get mapped to the same mesh dimension if the alignment

constraint is honored for another primary pair. For example, in the program segment shown in

Figure 5.4, A1 and B1 form a primary pair, while A2 and B2 form a secondary pair.

The compiler examines all alignment constraints for a given pair of references together. The

basic idea underlying the determination of quality measure(s) is to first identify two pairs of

81

do/= 1,n

doj = 1, n

A(i,j) = _'(B(i, k))
enddo

enddo

Figure 5.4: Identification of primary and secondary pairs

© ©

© ©
1 2

Figure 5.5: The two alignment configurations to obtain quality measures

dimensions, at least one of which forms a primary pair. The communication cost estimator is

invoked to return the cost estimate, say, tl, when the array dimensions are mapped so as to

honor the alignment constraint(s). Next, as shown in Figure 5.5, the alignment of the two pairs

of dimensions is swapped in the data partitioning information supplied to the estimator. The

cost estimate obtained now, say, t2 corresponds to the case when the alignment constraint(s) is

(are) not satisfied. If there is only one primary pair of dimensions, the quality measure of that

alignment constraint is set to t2 - tl. If both the pairs of dimensions are primary pairs, the

quality measure of each of those constraints is set to (t2 - tl)/2. This accounts for the fact that

under the given assumptions about which array dimensions are distributed, if one alignment

constraint is not satisfied, the other will also not be satisfied. Hence, their quality measures are

assigned values that will add up to give the performance penalty of t2 - tl.

In order to implement the above procedure, whenever a pair of references identifies only

one primary pair, the compiler has to identify a secondary pair of dimensions. If the number of

dimensions in the two arrays are different, the one with fewer dimensions is regarded as having

extra "missing" dimensions, as was done for estimating communication costs. The identification

82

© (3

: •

1-1 2-1 2-2

Figure 5.6: Identification of the secondary pair of dimensions

of the secondary pair is trivial when both the arrays have two or fewer dimensions, as shown in

Figure 5.6. The solid lines in the figure link primary pairs, and the dotted lines link secondary

pairs. The solid circles denote actual array dimensions, while the dotted circles denote missing

dimensions.

If any array in the given pair of references has three or more dimensions, and if there is

only one primary pair, there is more than one choice available for the array dimension that

may form part of the secondary pair. In that case, the compiler selects one of the dimensions

(other than the one constituting the primary pair) which '_exhibits" parallelism somewhere in

the program. A dimension is said to exhibit parallelism if there is at least one reference that

traverses the particular dimension in some paraUelizable loop. In order to help in this task, the

setup pass in PARADIGM identifies all such array dimensions. During that pass, whenever the

compiler detects that a statement can be parallelized with respect to a loop (as discussed in

Chapter 3), all array dimensions for which the var±al;ion-level of the subscript identifies the

same loop, are marked as exhibiting parallelism. Now if there are two or more candidates to

form part of the secondary pair, the compiler chooses one of them arbitrarily (it picks the first

such dimension). In the rare case when the two arrays have more than three dimensions each,

and also at least three primary pairs, the above procedure is carried out for two dimension pairs

at a time.

Another step to he performed in our procedure for obtaining the quality measures is to

supply the remaining partitioning parameters for the two pairs of dimensions that are assumed

to be distributed. Note that determining the alignment is the very first step, so all other

parameters are unknown at this stage. The compiler obtains the cost estimates under the

83

assumption that all array dimensions are distributed in a blocked manner. While the estimates

are obtained as functions of the number of processors in the two mesh dimensions, the numerical

values for the purpose of resolving conflicts are obtained assuming that both pairs of array

dimensions axe distributed on an equal number of processors. Thus in this step, the number of

processors in each dimension is assumed to be x/_, where N is the total number of processors in

the system. Our experimental results (described in the next chapter) suggest that the resulting

cost estimates, in spite of the inaccuracy due to these assumptions, usually guide the alignment

decisions in the right direction.

Example Consider again the statement shown in Figure 5.2, where the arrays A and B

have sizes n x n and n x 3n respectively. There are two primary pairs corresponding to

alignment constraints: (i) A1 and B2, and (ii) A2 and B1. The communication cost estimator

is first invoked for the case when these dimensions are aligned appropriately, and distributed

in a blocked manner on N1 = vfN processors each. The cost estimator finds each pair of

sub-references satisfying the stricl;ly synchronous property. Hence the data movement is

detected as being internalized, and the cost estimate returned is zero.

Next, the relative alignment of the two pairs of dimensions is swapped in the data partition-

ing information supplied to the communication cost estimator. This time, the cost estimator

finds each pair of sub-references (corresponding to A1 and B1, and to A2 and B2) varying in

the same loop, the/-loop. The expression j represents a subscript of the type single-index,

but with a different value of varia'cion-lQvel than the subscript expression i, and hence is

regarded as a constant in the/-loop. As shown in Table 4.3, the cost estimator tests for the

k-synchronous property between the sub-references (A(i,j), 1) and (B(j, 3 * i),2). The two

sub-references are found to be 1-synchronous, and hence the communication term obtained is

Transfer(n/N1). To account for the tiling of the j-loop, this term is modified to give the final

communication cost estimate as N1 * Transfer((n. n)/(N1 * N1)). The quality measure assigned

to each of the two alignment constraints is 0.5 • N1 * Transfer((n • n)/(N1 * N1)).

For each alignment constraint on a pair of dimensions, the compiler introduces an edge

between the corresponding nodes in the CAG. The quality measure obtained for that constraint

84

isrecorded as the weighton the edge. Ifan edge alreadyexistscorrespondingto the alignment

constrainttobe recorded,the qualitymeasure valueissimply added to the existingvalueof the

weight on thatedge. Once the entireprogram has been analyzed in thismanner, the compiler

obtainsa solutionto the alignment problem.

5.1.3 Determination of Distribution Parameter

The component alignment problem has been shown to be NP-complete, and a heuristical-

gorithm is given in [48]. PARADIGM uses a similaralgorithm,so we shalljust give a brief

descriptionhere.

I. Sort allthe columns (each column refersto the collectionof nodes corresponding to

differentdimensions of a singlearray)of CAG in a non-decreasingorder of theirnumber

of dimensions.Let the number of columns (i.e.,the number of arrays)be num.

2. For i varyingfrom 2 to nura do

(a) Find the optimal weighted matching between the bipartitegraph corresponding to

columns Cx and Ci. Since the number of nodes in each column isusuallylessthan

four,thisstep can be done by exhaustivelyconsideringallpossiblematchings.

(b) Merge the columns Ci and CI intoa singlecolumn CI by combining the matched

nodes accordingto the optimal matching. Clean up the CAG by replacingeach edge

from a node in the remaining columns to a node originallyin Ci by an edge to the

correspondingmerged node in CI, and by replacingmultipleedges between nodes

by a singleedge with weightequal to the sum oftheirweights.

Allthemerges performed between columns representalignmentconstraintshonored between

dimensions ofthe correspondingarrays.At the end ofthe algorithm,each node in C1 represents

a classofarray dimensions that are mapped to the same processormesh dimension. Thus, the

informationon mapping of arraydimensions to processormesh dimensions becomes known at

the end ofthe align pass.

85

5.2 Method of Partitioning: Blocked/Cyclic

The block-cyclic pass determines for each array dimension, whether it should be distributed

in a blocked or cyclic manner. It is important to note that "blocked" and "cyclic" distributions

axe simply two extremes of a general distribution, referred to as blocked-cyclic distribution. The

blocked distribution represents the special case when the block size is set to S/P, where S is

the dimension size and P is the number of processors. The term "cyclic" distribution normally

refers to the special case of blocked-cyclic distribution, with a block size of one. In this section,

we shall describe the procedure for choosing between these two extreme positions. Later, we

shall describe how further adjustments may be made on the block size of a dimension given a

cyclic distribution.

First, let us clarify the terminology in yet another fuzzy situation. In real programs, the

arrays are often statically declared to have bigger sizes than their actual sizes at run time. For

example, a single dimensional array may be declared to be of the size 1000, but at run time

may have only 800 elements. If it is to be distributed in a blocked manner on 10 processors,

it would be desirable to distribute all the 800 elements equally among those processors. This

can be accomplished by specifying a blocked-cyclic distribution for the array with a block size

of 80, so that the actual 800 elements are distributed in a blocked manner, and the remaining

"non-existent" elements axe mapped to the first three processors by the wrap-around. We

regard such distributions also as blocked distributions. For simplicity, the current version of

PARADIGM requires the programmer to supply the actual sizes of all arrays, so that there is no

disparity between the declared and the actual sizes.

We shall now examine the conditions under which there are constraints recorded on indi-

vidual array dimensions for blocked or cyclic distributions. After describing the procedure to

obtain quality measures for those constraints, we shall describe how collective decisions axe

taken on the method of partitioning for groups within each class of aligned array dimensions.

86

0

! !

T T

! !

T

2

5.2.1

blocked cyclic

Figure 5.7: Need for blocked distribution

Detection of Constraints

Blocked Distribution

If the distribution of any array dimension on more than one processor leads to communication

between nearest neighbors in that mesh dimension, as shown in Figure 5.7, it clearly indicates

the need for blocked distribution. The use of blocked distribution allows the communication

to be restricted to the elements lying at the boundaries of regions assigned to processors.

If the dependence constraints allow these communications to be carried out independently,

usually the savings are in the associated data sizes of messages. Cyclic distribution of such a

dimension would lead to larger amounts of data being transferred than blocked distribution. If

these communications take place in type-2 loops (due to dependence constraints), the potential

advantages of blocked distribution are even greater. In that case, the choice of cyclic distribution

leads to a larger number of messages to be sent. Given the high start-up costs of sending

messages, the penalties of such a choice can be tremendous.

87

2

iiiiiLiLiij i i i iiiiiiiiiiiiiiiiii

...... iiiiiiiiiii!iii iiiiiiii i!iii

0

1

2

0

1

2

blocked cyclic

Figure 5.8:Need for cyclicdistribution

Hence, duringthe detectionphase,the compileranalyzespairsofsub-referencescorrespond-

ing to aligneddimensions in each assignment statement. Ifthe correspondingsubscriptsare

of the type sS.ngae-£ndex and the sub-referencessatisfythe boundary-communication testde-

scribedin Chapter 4, a constraintfavoringblocked distributionisrecorded for the rhs array

dimension.

Cyclic Distribution

Usually, the main motivation for distributing an array dimension in a cyclic manner is to

get better load balance for parallelizable computations. Consider an assignment statement in

which the Zhs array gets only partially traversed, as indicated by the filled region in Figure 5.8.

Since the computations are partitioned according to the owner computes rule, using cyclic

distribution with a small block size leads to a more even distribution of computation than using

blocked distribution. That leads to a reduction in the execution time if those computations are

parallelizable.

88

do i= 2, n

D(i) = 9r(D(i - 1))
enddo

Figure 5.9: References suggesting constraint for blocked distribution

The detection of constraints for cyclic distribution proceeds in the same phase as that

for blocked distribution. For each lhs array sub-reference in an assignment statement, the

compiler examines the extent to which the subscript varies in the loop corresponding to its

variat£on-level. The compiler looks for a subscript of the type single-index, i.e., one of

the form cq • 3t +/_t. Using the terminology from Chapter 3 again, let the corresponding loop

index jt vary from it to f_ in steps of st, with the range of the loop given by rz = ft - it + st.

The extent of traversal of the subscript along the array dimension is given by Icql • rt. If

the ratio of the extent of traversal to the dimension size is less than a certain threshold (the

value of this threshold is set to 2/3 in the current implementation), and if the given statement

is parallelizable with respect to the loop Lt, the compiler introduces a constraint on cyclic

distribution for the given array dimension.

5.2.2 Determination of Quality Measures

The quality measure of a constraint for blocked (cyclic) distribution is an estimate of the penalty

incurred in execution time if the array dimension is instead given a cyclic (blocked) distribution.

Blocked Distribution

Consider the statement shown in Figure 5.9. The analysis of the given pair of references shows

a need for boundary Transfers inside the/-loop, and hence suggests a constraint for blocked

distribution of D1. Given the general blocked-cyclic distribution of D1, the communication cost

for the rhs reference is estimated by the compiler as:

Cost = (r(-- l)Ibl]- i), Transfer(l),

89

do/= 1,n

doj = 1, i

D(j) =...

Figure 5.10: Reference suggesting constraint for cyclic distribution

where bl is the block size of distribution of D1. Let Art denote the number of processors on

which D1 is distributed. The quality measure for the constraint is obtained as the difference

in the communication costs when the block size is 1 (corresponding to cyclic distribution), and

when the block size is rn/N1] (corresponding to blocked distribution). Thus, the compiler

obtains the following value:

Quality measure = (n - 2) • Transfer(l) - ([(n - 1)/(_n/Nx])] - 1) * Transfer(l)

Cyclic Distribution

As an example of a constraint favoring cyclic distribution, consider the program segment shown

in Figure 5.10. Let the array D consist of n elements. The compiler regards the range of the j-

loop as In/2]. The extent of traversal of the subscript j over D1 during the j-loop is accordingly

determined as _n/2]. Hence, the compiler recognizes the need for cyclic distribution of D1 in

order to obtain better load balance. Let t denote the estimated computational time for executing

one instance of the given statement. As shown by Equations 3.1 and 3.2 in Chapter 3, the

overall computational cost estimate for the statement is obtained as:

Cost = t • n • • irnl2]l(N, • bl)J + r /2] mod (N1 * bl)))

The quality measure of the constraint is given by the difference in computational cost when

the block size is In�N1] (for blocked distribution), and when the block size is 1 (for cyclic

distribution). The estimated cost amounts to t • n • rn/N_] for blocked distribution, and to

t, n. rn/(2, N1)] for cyclic distribution. This corresponds to PAI_ADICM estimating the speedup

roughly as N1/2 for blocked distribution, and N1 for cyclic distribution, and hence recording a

constraint favoring cyclic distribution, with an appropriate quality measure.

9O

5.2.3 Determination of Distribution Parameter

So far we have discussed only the requirements of individual array dimensions with regard to

blocked or cyclic distribution. For arrays that cross-reference each other, it is also important

to make sure that their aligned dimensions are _ven the same kind of partitioning: blocked

or cyclic. Otherwise, the alignment of array dimensions would fail to ensure the intended

alignment of array elements, leading to excessive communication costs that defeat the purpose

of aligning those dimensions.

However, not all the array dimensions that are mapped to the same mesh dimension need

be constrained to have identical methods of partitioning. To determine which array dimen-

sions must satisfy that property, PARADIGM keeps track of the transitive closure of the cross-

referencing (CI_) relationships between arrays. Two arrays A and B are said to be CR-related

if there is an assignment statement in the program that has A (B) as its lhs array, and B (A)

as its rhs array. The sel:up pass in PARADIGM records this information in the form of disjoint

CI_ sets, each set consisting of arrays that are directly or transitively CR-related. This is done

using the well-known union and find algorithms [18]. Initially, each array is in a separate CR

set by itself. For each pair of lha and rh8 arrays A and B in an assignment statement, the

compiler first determines the CR sets containing A and B using the find algorithm. If the two

CR sets are different, they are combined using the union algorithm.

Given the above information, PAI_ADIGM takes collective decisions on the method of par-

titioning for all the array dimensions that are mapped to the same mesh dimension, and that

correspond to arrays in the same CR set. For each such group of array dimensions, the com-

piler compares the sum of quality measures of constraints advocating blocked distribution and

those favoring cyclic distribution, and chooses the one with the higher value. In case of a tie

(for instance, if there are no constraints either way), the compiler chooses blocked partitioning.

Thus, decisions in this pass are considerably influenced by alignment considerations as well.

91

5.3 Block Sizes of Distributions

While the compiler makes a choice between the extreme positions of blocked and cyclic distri-

bution during the block-cyclic pass, further adjustments on the block size are made during

the bX0ck-size pass. The load-balancing considerations that lead to cyclic distribution often

favor using a block size of one (the smallest possible value) to get a more even distribution

of computation. In this section, we show how the compiler detects and attempts to satisfy

other requirements on the block sizes of distributions. These requirements include relation-

ships between block sizes of aligned array dimensions, that ensure the proper alignment of the

underlying array elements.

We believe that this analysis is sometimes needed when arrays are used to simulate certain

data structures like records, not supported directly by Fortran, or when lower-dimensional

arrays play the role of higher-dimensional arrays. For instance, a linear array of records may

sometimes be represented simply as a 1-D array, where the programmer "knows" that a certain

number of successive elements in the array represent a single logical entity. An example of

that is seen in the mdg program of the Perfect Benchmarks [17], where certain items such

as the velocities and momenta of water molecules are stored in 1-D arrays that contain the

relevant information for each of the three atoms making up every molecule. The block sizes of

distributions of those arrays need to be given values that are thrice the corresponding values

for arrays that store just a single piece of information for each molecule.

The current versionof PARADIGM carriesout thisanalysisonly for cyclicdistributions.

The same ideascan alsobe used to chooseappropriateblock sizesfor "blocked"distributions,

discussedin the previous section,where the staticdeclarationsshow bigger dimension sizes

than the actualsizesat run time. However, presentlythe compiler expectsvaluesof the actual

dimension sizestobe suppliedby the programmer. The blocksizefora dimension distributedin

a blocked manner isthen determined only by the dimension sizeand the number of processors

in the correspondingmesh dimension.

92

5.3.1 Detection of Constraints

The compiler examines the sub-references corresponding to aligned dimensions for each pair of

lhs and rhs array references in an assignment statement. For sub-references corresponding to

different arrays, if both of the corresponding subscripts are of the type single-index, and have

the same value of vax±ation-level, block-size constraints are recorded as follows. Let the two

subscripts be of the form _1 * jz + 81, and a2 * jt + 82, with wl = lall, and w2 =]a21 The block-

size constraint induced by the given pair of sub-references suggests two related requirements,

namely: (i) the block sizes of (distributions of) the two array dimensions should respectively

be multiples of wl and w2, and (ii) the ratio of block sizes of those dimensions should be wl/w2.

The first requirement represents one of the conditions for regularity of data movement in case of

interprocessor communication. The second requirement is essential for proper alignment of the

elements of the two arrays. Both of these requirements are satisfied if the block sizes chosen for

the two dimensions are k • wl and k • w2, where k is an integer, preferably as small as possible.

The block-size constraints and their quality measures are represented by means of an undi-

rected graph, the Block-size Constraint Graph (BCG), that is similar in some regards to the

CAG used for alignment constraints. The BCG has nodes representing array dimensions, and

edges representing the block-size constraints between aligned dimensions. Each edge is marked

with two items of information: (i) the coefficients wl and w2 associated with the given con-

straint (our representation identifies the node that each coefficient corresponds to, even though

the edge itself is undirected), and (ii) the value of weight, that is equal to the quality measure

of that constraint.

5.3.2 Determination of Quality Measures

The quality measure of a block-size constraint between two array dimensions is an estimate of

the extra communication cost incurred if the conditions associated with the given constraint

are not met. To obtain estimates for the case when the conditions are satisfied, the compiler

sets the block sizes of the two dimensions to the values wl and w2 respectively, and invokes

93

do/-- 1, n

A(i) = .F(B(3 • i))
enddo

Figure5.11:Referencessuggestingblock-sizeconstraint

the communication cost estimator. However, for the situation when the conditions axe not

satisfied, there axe numerous possibilities regarding the block sizes of those dimensions. The

compiler needs to make a "reasonable" choice among those possibilities to model the effect of

the constraint not being honored.

The default block size given to dimensions in the absence of any block size constraint is 1.

Hence if either of 0al or w2 is not equal to 1, the compiler sets the block size of both dimensions

to 1 while obtaining cost estimates for the case when the constraint is not satisfied. If both Wl

and w2 axe equal to 1, the compiler sets the block size of the 1ha dimension to 1, and uses an

arbitrary value (two) for the block size of the rh8 dimension to model the situation when the

constraint is not satisfied.

Consider the statement shown in Figure 5.11. Let the sizes of the dimensions A1 and Ba

be n and 3 * n respectively, and let them be distributed in a cyclic manner on N1 processors.

There is a constraint recorded between A1 and Bx that requires their respective block sizes to

be k • 1 and k * 3 for a small integer k. To obtain the quality measure, the communication

cost estimator is first invoked with the block size of Ax set to 1, and of B1 set to 3. The data

movement is completely internalized in that case, and the communication cost returned is zero.

The situation when the constraint is not satisfied is created by setting both the block sizes to

1. In this case, the cost estimator is unable to detect any regularity in the data movement, due

to the block size of Bx not being a multiple of 3 (as discussed in Chapter 4). Therefore, the

cost estimator assumes the use of repeated Transfers inside the/-loop, and returns an estimate

of n • (1 - 1/Nx) * Transfer(I). Since the cost estimate in the other case is zero, this term also

gives the quality measure of the constraint.

94

Eachnewblock-sizeconstraint corresponding to a pair of dimensions is recorded as an edge

in the BCG. The edge is marked with the associated coefficient values Wl and w2, and the

value of quality measure is recorded as the weight on that edge. If at a certain point in the

program, an edge already exists in the BCG corresponding to a constraint to be recorded, the

compiler examines the relationship between the coefficients we and w_ on the existing edge,

and the coefficients w_ and w_ associated with the present constraint. If w_/w_ = w_/w_, the

two constraints are consistent. In this case, the compiler computes the value of lcrn(w_, w'_)

(the lowest common multiple of we and w_). The coefficients on the edge are changed to

lcrn(w_,w_) and (w_ * lern(w_,w_))/w_ respectively, and the value of quality measure for the

present constraint is added to the weight on the existing edge. If on the other hand, w_/w_

n r$
w1/w2, the two constraints are not consistent with each other. In that case, a separate edge

with its own values of coefficients and weight is introduced between the same pair of nodes.

5.3.3 Determination of Distribution Parameter

We now describe the algorithm that takes into account all block-size constraints, and obtains

the block sizes for all the array dimensions with cyclic distributions. The objective is to select

the block sizes such that the sum of quality measures of constraints that are not satisfied is

minimized. The following theorem indicates a sufficient condition for the absence of conflicts

among constraints.

Theorem 5.1 The conditions associated with all of the block-size constraints in the program

can be satisfied if there are no cycles in the BCG.

Proof.. The absence of cycles implies that there are no multiple edges between any pair of nodes

in the BCG. Hence, by our method of construction of BCG, there are no direct conflicts between

block-size requirements on a pair of dimensions due to any two constraints. We shall now prove

the absence of indirect conflicts as well, by presenting an algorithm that constructs a solution

for such a BCG.

95

Each component (connectedcomponent) ofthe BCG forms a tree,sincethere are no cycles

in the graph I. For each tree,the followingalgorithm selectsthe block sizescorrespondingto

allitsnodes (i.e.,the array dimensions associatedwith those nodes) such thatevery block-size

constraintbetween them issatisfied.

I. Choose an arbitrarynode r in the tree,and any edge incidenton that node. Set the block

sizeof the node r to the valueofthe coefficient_4)1 marked forr on the edge.

2. For each node v visitedin a preordertraversalstartingfrom node r do

(a) Let bl be the block sizeof the previousnode p (keep track of the lastnode vis-

ited).Let _i and _2 be the valuesof coefficientsassociatedwith the nodes p and v

respectivelyon the currentedge.

(b) Ifbl*_2 isperfectlydivisibleby _I, setthe block sizeb2 of node v to (bl*_2)/_I,

and go to the next step.Otherwise,setIto Icm(b_ •0_2,_I);setthe block sizeof v

to I/col;foreach ofthe node visitedso far (from r to p),multiplyitsvalueof block

sizeby I/(bl*_2).

It can be seen that the assignment(s)made to block size(s)in Step 2 (b) at the time of

traversalofeach edge ensurethatthe followingconditionissatisfiedforevery edge traversedso

far:the blocksizesof the two nodes connected by the edge have valuesthat can be expressedas

k.ah and k.a_2respectively,where k isan integer,and _I and _2 arethe valuesofthe coefficients

recorded forthatedge. Thus, the applicationofthe above algorithmto each component of the

graph BCG resultsin an assignment ofblocksizesthatsatisfiesallofthe block-sizeconstraints.

[]

In general,the BCG fora program may have cyclesthatintroduceconflictsbetween block-

sizeconstraints,as shown in Figure 5.12. These conflictsmay be (i)direct,as shown by the

presence of multipleedges between a given pairof nodes, or (ii)indirect,as shown by cycles

involvingmore than two nodes (thepresenceof such cyclesisa necessary,and not a sufficient

conditionfor an indirectconflict).The firstproblem isdealtwith by retainingonly one edge

ITheBCG hasatleastasmany componentsasthenumberofmesh dimensions.

96

o_i= 1, o)2= 2
o)ff 1,_2=2

(i) (ii)

Figure 5.12: Conflicts between block-size constraints

between any pair, the one with the highest weight, and deleting all other edges between that

pair.

Let us explain how PARADmM deuls with the second problem. The objective of the conflict

resolution strategy is to disregard those conflicting constraints that have the smallest value of

quality measure associated with them. In the context of BCG, that translates to removing those

conflicting edges from each cycle that have the smallest weight on them. We have already shown

that if each component of a BCG is a tree, all of the block-size constraints corresponding to the

edges in that tree can be satisfied. This suggests that the compiler should identify trees that

include the "heavy" edges. Hence, for each component of BCG, the compiler finds a maximum

cost spanning tree, i.e., one for which the sum of weights on the edges is maximum. The

algorithm used for this purpose is one obtained by a trivial modification of Prim's algorithm

[58, 18] for finding a minimum cost spanning tree. Once the spanning tree is obtained, the

block sizes for (the dimensions corresponding to) the nodes in the graph are determined by

applying the algorithm shown above in the proof of Theorem 5.1. The block size for each other

dimension with a cyclic distribution is set to 1, by default.

5.4 Number of Processors in Mesh Dimensions

The only data partitioning parameters that are left unknown at the beginning of the num-procs

pass are the number of processors in different mesh dimensions. The num-procs pass attempts

97

to determine these parameters such that the expected parallel execution time of the program

is minimized.

The structure of this pass is slightly different from that of other passes, due to the different

nature of the optimization problem to be solved. In this case, the constraints do not suggest

definite values of the distribution parameters (i.e., the number of processors in various mesh

dimensions) for getting good performance. Hence, the notion of selecting certain constraints

to be honored, is absent from the optimization process. Correspondingly, the quality measures

of these constraints are defined in terms of the expected execution time, rather than the per-

formance penalty, and are expressed as functions of the number of processors in different mesh

dimensions. The quality measures of sequentialization construints, that recommend sequential-

izing an array dimension to eliminate interprocessor communication, are expressed as functions

that evaluate to zero if the number of processors is set to one.

5.4.1 Recording of Constraints and Quality Measures

In this phase, the compiler analyzes each assignment inside a loop, to an array element, or to

a scalar involved in a reduction operation. Both the computational and the communication

cost estimators are invoked, and the sum of those estimate terms gives the contribution of the

statement to the expected program execution time. Since all other data partitioning parameters

are known at this point, these terms are functions only of the number of processors in different

mesh dimensions.

The sum of contribution terms from all statements examined by the compiler yields the

relevant part of the expected program execution time, that drives the selection of the number

of processors. For the most part, these terms are determined only once. They are simply re-

evaluated with different values for number of processors, in different steps of the optimization

process. However for estimating the communication costs of statements with certain kinds of

references as described in Table 4.3 of Chapter 4, the precise value of the block size, and hence,

of the number of processors (in case the dimension is distributed in a blocked manner) is needed.

98

For such references, the communication cost terms are determined repeatedly in different steps

of the optimization process described below.

5.4.2 Determination of Distribution Parameter

PARADIGM currently determines an appropriate .data partitioning scheme for exactly the num-

ber of processors, N, specified as available in the system. It is well-known that for any program

operating on a fixed data size, increasing the number of processors (on which the program is

partitioned) beyond a certain point causes a degradation in performance due to higher com-

munication overheads. Hence, another flavor of the data partitioning problem would be one

where given a value of N, the compiler also has to determine N _, the number of processors on

which data should be distributed. For that problem, the algorithms described below can easily

be extended to explore the search space over N t that varies from 1 to N.

Reduction of Number of Mesh Dimensions

In the preceding passes, each dimension of an array is assumed to be distributed on a distinct

mesh dimension, and hence, potentially on more than one processor. Clearly, mesh dimensions

in which excessive communication take place, and those in which not much parallelism is ex-

hibited during the program, need to be collapsed into a single processor. In order to reduce

the amount of search space, PARADIGM sequentializes all except for two (at most) dimensions

of each array. Thus, the target topology is finally configured as a 1-D or a 2-D mesh.

We believe that for most scientific application programs, restricting the number of dis-

tributed dimensions of a single array to two does not lead to any loss of effective parallelism.

In a comprehensive study of Fortran programs [70], Shen et aJ. reported finding only 8% of the

array references with more than two dimensions, and only 1% with more than three dimensions.

Even when higher-dimensional arrays show parallelism in each dimension, restricting the num-

ber of distributed dimensions does not necessarily limit the extent to which parallelism can be

exploited. For instance, the statement shown in Figure 5.13 has references to three-dimensional

99

dok= 1, n

do j= 1,n

do/= 1,n

Z(i,j,k) = c, Z(i,j,k)+ Y(i,j,k)

enddo

enddo

enddo

Figure 5.13: P_eferences to higher-dimensional arrays in parallelizable loops

arrays, and appears in a completely paralhlizable loop nest. However with a fixed number of

processors, roughly the same speedup would be obtained whether we distribute two or three

dimensions of the arrays Y and Z.

If the value of D (the maximum dimensionality of any array in the program) is greater than

two, the compiler selects D - 2 of the mesh dimensions to be collapsed. This is done through

the following steps:

1. For a given set of aligned array dimensions, the compiler examines the field recorded for

each array dimension during the setup pass, that indicates whether the array dimension

exhibits parallelism somewhere in the program. If none of the array dimensions in the

set exhibits parallelism, the mesh dimension to which they are mapped is collapsed into a

single processor. For the purpose of obtaining performance estimates during the remainder

of this pass, the parameter representing the number of processors in that dimension is set

to one. This step is repeated for all of the D sets of aligned array dimensions.

2. Let the number of dimensions that have not been collapsed at the end of the previous

step be D t. This step is required only if D _ > 2. The estimates for times spent on

computation and on communication are available to the compiler as functions of the pa-

rameters N1, N2,... 2VD,, representing the numbers of processors along the corresponding

mesh dimensions. The compiler evaluates the expected execution times of the program

for C D' cases (C2D' is the number of ways of choosing 2 items from D _ items), each case

corresponding to two different Ni variables set to v_, and the other D I - 2 variables set

100

to 1. The case which yields the smallest value for expected execution time is chosen, and

the corresponding D _ - 2 dimensions are collapsed.

Search for Mesh Configuration

At this point, there are at most two mesh dimensions that have not been collapsed. If there is

only one such dimension left, the number of processors in that dimension is set to N, and that

marks the end of the ntua-procs pass.

If the number of mesh dimensions is two, the only parameters left unknown in the partition-

ing scheme are N1 and N2, the number of processors in those dimensions. The two parameters

are related by N1 * N2 = N. The compiler evaluates different mesh configurations corresponding

to values of N1 varying from 1 to N, and being doubled in each step (assuming N is a power of

two). The expression for the expected execution time is evaluated for each configuration, and

the one that leads to the smallest expected execution time is selected.

101

CHAPTER 6

EXPERIMENTAL RESULTS

The methodology we have described for automatic data partitioning has been implemented as

part of the PARADIGM system. Our system accepts Fortran 77 programs and determines the

partitioning scheme to be used for all the arrays in them. In this chapter, we present the results

obtained by PARADIGM on some Fortran codes taken from the Linpack and Eispack libraries,

and the Perfect Benchmarks [17].

PARADIGM has been designed to be largely machine-independent. There is a small machine-

dependent part that supplies the cost metrics of various operations used in the local computa-

tions, and of high level communication primitives supported on the target machine. Clearly, the

validation of the ideas underlying our approach has to be done on a real machine. The testbed

used for the implementation and evaluation of our system is the Intel iPSC/2 hypercube [5].

The final measure of success of any automatic data partitioning scheme is the performance

of the resulting compiler-generated parallel program on the target multicomputer. However,

most of the compilers that carry out the task of generating data-parallel programs, given the

sequential program and data partitioning information, are still under development. Hence

currently, the validation of results through actual program performance is a very tedious process.

It requires manual development of different versions of the parallel program with message

passing, corresponding to different data partitioning schemes.

For the sake of evaluation of our approach, we have gone through this effort for three of

the programs. We have developed multiple parallel program versions corresponding to different

102

data partitioning schemes. For those programs, we shall show the actual performance results

of different versions on the iPSC/2. For the remaining programs, we shall only show the data

distribution scheme determined by the compiler, and explain the rationale behind some of the

choices of data distribution parameters. A more rigorous evaluation would be possible once

sophisticated compilers for multicomputers become available. For the present, we believe even

these results are quite significant, since the compilers have widely been regarded as incapable

yet of taking good data partitioning decisions.

6.1 Methodology

The results we report on data partitioning are obtained using the version of PAKADIGM supplied

with information on the cost metrics for the iPSC/2. All of the results are obtained for a 16-

processor system. For some of the programs in which the choice of partitioning scheme is

influenced considerably by the data size, we present results for different data sizes used. The

information on the size of each array is added to each program, in case the original program

does not have that information.

The current version of PARADIGM does not perform interprocedural analysis. Therefore,

programs with procedure calls are first transformed through in-line expansion of procedure

calls. In order to obtain results for some of the larger programs, we have selected the routines,

based on profiling information, in which the program spends the maximum amount of time.

These routines are then analyzed by PARADIGM as separate entities.

The source listing of the final version of each program is being provided for the sake of

clarity, and to allow further evaluation of these results in future. Two of the programs are

shown in Figures 6.1 and 6.4. The remaining programs are listed in Appendix I.

103

6.1.1 Application Programs

Resultsaxe presentedon sixFortranprograms ofvaryingcomplexity.The smallestprogram is

Jacobi, a simplifiedversionof a relaxationcode that performs Jacobiiterationsin a loop. The

second program isfred2, a routinetaken from the Eispack library.Itreducesa realsymmetric

matrix to a symmetric tridiagonalmatrix,using and accumulating orthogonal similaritytrans-

formations.The next program isdgefa, taken from the Linpack library.Itfactorsa realmatrix

usinggaussianeliminationwith partialpivoting.TMs program makes callsto some other Lin-

pack routines.Hence, the versionwe use isa transformed one where procedure in-lininghas

been done by hand.

The remainingthreeprograms axeindividualprocedurestaken from the PerfectBenchmarks.

01da isthe dominant procedurein the _:rfdprogram thatsimulatesthe computational aspects

of a two-electronintegraltransformation.A profileof the sequentialversionshowed the trfd

program spending more than 98% ofitstimeinthe olda routine.The routinesdflux and Qflux

axe two of the threemost important procedures(interms oftime spent)of the flo52 program.

Flo52 isa two-dimensional code that analyzes the transonicinviscidflow past an airfoilby

solvingthe unsteady Euler equations.The otherimportant procedure in that program, psmoo

isa much simplerpieceof code, and usesonly one array.Hence, we have chosen to illustrate

our methodology forthe above,more interestingroutines.

6.1.2 Machine-Specific Information

We now describe the information assumed regarding the performance characteristics of the

iPSC/2 machine, as supplied to the compiler. The following approximate function [33] is used

to estimate the time taken, in microseconds, to complete a Transfer operation on m bytes :

Transfer(m) = / 350 + 0.15, m if m < 100

(700 + 0.36, m otherwise

Note that our examples usually express the message sizes in terms of the number of words. A

double-precision floating point number occupies eight bytes of storage.

104

Primitive I Cost on iPSC/2

Reduction(re,p) ['log2(p)], Transfer(m)

Shift(m) 2* Transfer(m)

0neToManyMulticast(m, p) _log2(p)]. Transfer(m)

ManyToManyMulticast(m,p) (p- 1). Shift(m)

Scatter(m, p) (p - 1), Transfer(m)

Gather(re,p) (p- 1). Transfer(m)

Table 6.1:Costs of collectivecommunication primitiveson the iPSC/2

The costmetricsused for the collectivecommunication primitivesare shown in Table 6.1,

where they are expressedin terms ofthe time to carryout a Transferprimitive.The parameter

p denotes the number of processorsover which the primitiveiscarriedout. Both Reduction

and OneToManyMulticast take log2(p)stepswith tree-basedalgorithms. A Shiftoperation

involveseach processorsendingdata toitsneigboringprocessor,and receivingdata from another

neighboringprocessorin the other direction,and hence ismodeled as taking time equivalent

to two Transfers. A MauyToManyMulticast over a group of p processorscan be done via

p - 1 Shiftsusing a ring-basedalgorithm. A Scatteroperationisimplemented as a sequence

of Transfers,where the sourceprocessorsends differentpiecesof data individuallyto the p - i

other processors.Similarly,a Gather primitiveinvolvesp- i processorssending data to one

processor.In case a differentalgorithmisused for any of theseprimitives,the cost measures

can be modified appropriately.

The double-precisionfloatingpointperformanceofasinglenode ofiPSC/2 has been reported

at 0.2 MFlops [5].Hence forthe computational costs,each double precisionfloatingpoint add

or multiplyoperationisassumed totake 5 microseconds.The floatingpointdivisionisassumed

to be thriceasexpensive.To obtainthe costsofreferencingvariables,the compilerusesa simple

model, and does not attempt toestimatethe extentof usage ofregistersor cache memory. The

compiler assumes that each load and storeoperationtakes0.5 microseconds each. The timing

overhead associatedwith variouscontrolinstructionsisignored.

105

6.2 Data Partitioning Schemes

We now describe the data distribution schemes determined by PARADIGM for different programs.

We have chosen the trod2 program to illustrate the operation of different data distribution

passes in greater detail, since tred2 is a small yet reasonably complex program that defies easy

determination of the "best" data partitioning scheme by simple inspection.

6.2.1 Application 1:TRED2

The source code of tred2 is listed in Figure 6.1. The program uses four different arrays. The

arrays A and Z are two-dimensional, while D and E are one-dimensional.

Alignment The first step relating to data distribution is the determination of alignment

between array dimensions. The Component Affinity Graph (CAG) built by PARADIGM based

Theon the alignment constraints in different parts of the program is shown in Figure 6.2.

symbolic expressions corresponding to the edge weights on CAG are shown below:

cl = [0.5• (Nl/2) * Transfer((n • n)lN) - 0] (line 3)

c2 = [0.5* (N1/2) * Transfer((n • n)/N) - 0] (line 3)

c3 = [Transfer(n/N,)- (1- 1/N,), Transfer(n/N,)l (line 4)

c4 = [(n - 1) * (n/2) * Transfer(niNx) - (n - 1) *(n/2) * (1 - 1/N1) * Transfer(n/N,)]

(line 58) + [(, - 1) * Transfer(n/N1) - (n - 1) • (1 - 1/Nx) * Transfer(n/Na)] (line 71) +

[(, - 1) • (LNi/4J + 1) • Transfer(nlN1) -

(n- 1), OneToManyMulticast(n/N1, (LN1/4J+ 1))] (line 77)

c5 = [(n - 1) * (n/2) • (1 - 1/N) • Transfer(i) - (n - 1) * (n/2) * (1 - 1/N_) • Transfer(l)]

(line 18) + [(n - 1) • (n/2) * (1 - 1/Y) • Transfer(l) -

(n - 1)• (n/2) • (1 - 1/Y,) • Wransfer(1)l(line 59) + [mransfer(n/gi) -

(1 - 1/N_) • Transfer(n/Nx)] (line 83)

c6 = [(n - 1) • (1 - 1/N) • Transfer(l) - (N1 - l) *Transfer(i)] (line i6) +

106

1 DO51=I,N

2 DO3J=I,N

3 Z(J,I) = A(J,I)

4 D(I) = A(N,I)

5 CONTINUE

6 IF (N .EQ. 1) GO TO 82

7 DO63U =2, N

8 I=N+2-11

9 L=I-1

10 H = 0.0DO

11 SCALE = 0.000

12 IF (L .LT. 2) GOTO 16

13 DO14K=1,L

14 SCALE = SCALE + DABS(D(K))

15 IF (SCALE .NE. 0.0D0) GO TO 23

16 E(I) = D(L)

17 DO21J=1,L

18 D(J) = Z(L,J)

19 zo,J)=O.OOO

2o Z(J,I)=o.o0o
21 CONTINUE

22 GO TO 62

23 DO25K=1,L

24 D(K) = D(K) / SCALE

25 H = H + D(K) ° D(K)

26 CONTINUE

27 F = D(L)

28 G = -DSIGN(DSQRT(H),F)

29 E(I) = SCALE ° G

30 H=H-F*G

31 D(L) = F - G

32 DO33J=1,L

33 E(J) = O.ODO

34 DO45J = 1, L

35 F = D(J)

36 Z(J,I) = F

37 G = E(J) + Z(J,J) * F

38 JP1 =J + 1

39 IF (L .LT. JP1) GO TO 43

40 DO 43 K = JP1, L

41 G = G + Z(K,J) * D(K)

42 E(K) = E(K) + Z(K,J) * F

43 CONTINUE

44 E(J) = G

45 CONTINUE

46 F = O.ODO

47 DO50J = 1, L

48 E(J) = E(J) / H

49 F = F + E(J) * D(J)

5O CONTINUE

51 HH = F/(H + H)

52 DO53J=1,L

53 E(J) = E(J) - HH * D(J)

54 DO61J=1,L

55 F = D(J)

56 G = E(J)

57 DO58K=J,L

58 Z(K,J) = Z(K,J) - F * E(K) - G * D(K)

59 D(J) = Z(L,J)

so zo,J) =o.ooo
61 CONTINUE

62 D(I) = H

63 CONTINUE

64 DO81 1=2, N

65 L=I-1

66 Z(N,L) = Z(L,L)

67 Z(L,L) = 1.0DO

68 H = D(I)

69 IF (H .EQ. O.ODO) GOTO 78

70 D071K=I,L

71 D(K) = Z(K,I) / H

72 DO78J = 1, L

73 G = 0.0D0

74 DO75K= 1, L

75 G = G + Z(K,I) ° Z(K,J)

76 DO78K= 1, L

77 Z(K,J) = Z(K,J) - G * D(K)

78 CONTINUE

79 DO8OK=I,L

80 Z(K,I) = O.OOO

81 CONTINUE

82 DO 85 I = 1, N

83 O(I) = Z(N,I)

84 Z(N,I) = O.ODO

85 CONTI NUE

86 Z(N,N) = 1.000

87 E(1) = O.OOO

88 END

Figure 6.1: Source code of tred2 routine

107

A 1 Z1

E1
C1 C C7

A :_ __"""_'_('_'_'_ 5 v 191

C2

Figure 6.2:Component AffinityGraph forfred2

[(n- 1)* Tramsfer(n/N1)- O] (line53)

c7 = [(n - 1) • (n/2) • _ansfer(./N1) - (,_- 1)• (./2) • (1 - 1/N1) • Transfer(n/N,)]

(fine 42) + [(n - 1) * (LN1/4J + 1) * Transfer(n/N1) -

(n - 1) * OneToMazayMtdticast(n/Nl,(LN1/4J + 1))1 (line 58)

Along with each term, we have indicated the line number in the program that leads to the

corresponding constraint. The total number of processors is denoted by N. At this stage, the

mesh of processors is assumed to he configured as N1 x N1 mesh, where N1 = V_.

The CAG for "cred2 shows conflicting requirements on alignment from different parts of

the program. For example, the references in statements 58, 71 and 77 favor alignment of D1

with Z1, while those in statements 18, 59 and 83 favor alignment of D1 with Z2. This clearly

illustrates the need for good quality measures to guide the compiler in taking such decisions.

In fact, in this case, the best alignment to use may not be immediately obvious to even an

experienced programmer. The algorithm for component Mignment groups the array dimensions

into the following classes - class 1 consisting of A1, Z1, D1, El, and class 2 consisting of A2, Z2.

The array dimensions in these classes are mapped to dimensions 1 and 2 respectively of the

processor mesh.

Method of Partitioning There are numerous statements throughout the program that lead

to constraints favoring cyclic distribution being recorded for array dimensions mapped to both

the mesh dimensions. For example, statement 53 suggests a constraint on cyclic distribution of

108

hi

© (I,I)

(I, I)

Zl

(1,1)
--.-- E 1

l.., 1

Figure 6.3: Block-size Constraint Graph for *cred2

El, and statement 60 suggests a similar constraint for Z2. There is only one statement in the

program that favors blocked distribution of any array dimension, namely, statement 16. Note

that the given assignment E(i) - D(1) on that statement appears as E(nq-2-ii) - D(n-}-1-ii),

as a result of the induction variable recognition performed by Parafrase-2 [27]. That enables

detection of the constraint favoring blocked distribution of D1.

All of the arrays in the program belong to the same set of CR-related arrays, since they cross-

reference each other in various statements. Hence collective decisions are taken on the method

of partitioning for entire classes of aligned array dimensions. For the array dimensions mapped

to mesh dimension 1, the sum of quality measures of constraints for cyclic distribution is 316.5

seconds (for n -- 512, and for N - 16). The quality measure of the lone constraint favoring

blocked distribution in that case is 0.134 seconds. Therefore all those array dimensions are given

cyclic distribution. For array dimensions mapped to mesh dimension 2, the only constraints

recorded are those favoring cyclic distribution. Hence all the remaining array dimensions too

are given cyclic distribution.

Block Size The Block-size Constraint Graph (BCG) constructed for the program is shown

in Figure 6.3. For each edge, we have shown the values of the two coefficients that identify the

block-size requirements of the given constraint. It can be seen that all block-size constraints in

the program have identical requirements that both the l_hsand the rhs dimensions be given block

sizes of the form k • 1. This is due to the fact that every subscript of the type single-index,

i.e., of the form al * jl q- a2, has the coefficient al equal to +1 or -1. Thus, even though there

109

isa cyclein the BCG, thereare no conflictsbetween any block-sizeconstraints.The algorithm

used in the block-size pass assignsa block sizeof I to each array dimension.

Number of Processors Sincethemaximum dimensionalityofarraysinthe fred2 program is

two,the machine isinitiallyassumed tobe configuredas a 2-D,NIx N2 mesh, with NI*N2 = 16.

Therefore,the firststep of collapsingextra dimensions for dealingwith higher-dimensional

meshes isnot required.The compiler evaluatesthe expressionsfor (the relevantpart of) the

expected program executiontime for differentmesh configurations,varying NI from 1 to 16,

doublingitsvalueineach step.The expected executiontime consistentlydrops with an increase

inthe value ofNI, itsvaluegoes down from 1854.9secondsfora I x 16 mesh to 515.7 seconds

fora 16 x 1 mesh. The compiler selects16 x 1 as the finalmesh configuration,for n = 512.

The finaldistributionfunctionsdetermined for allthe array dimensions are:

f(A1, i) = f(Z1, i) = f(D1, i)

f(A2,j) = f(Z_,j) = 0

= f(E1, i) = (i- 1) mod 16

This corresponds to the distribution of arrays A and Z by rows in a cyclic manner, and of

arrays D and E also in a cyclic manner, on all the 16 processors.

6.2.2 Application 2: JACOBI

The source code of the Jacob£ program isshown in Figure 6.4. This simplifiedversionre-

peatedly carriesout relaxationcomputations followedby copying of array elements to store

the elements computed in the previousstep.The two assignment statements involvingarrays

suggestidenticalalignment constraintsthat lead to AI being alignedwith BI, and A2 being

alignedwith B2. The data movement forthe firstof thosestatements shows nearest-neighbor

communication in the form of Shiftoperations.The resultingconstraintslead to blocked dis-

tributionof allthe array dimensions.The finalstep of determining the valuesof N1 and N2,

namely, the number ofprocessorsineach mesh dimension,shows an interestingvariationin re-

sultswith change inthe sizeofarrays.The contributionofcommunication coststo the program

110

3O
2O

50

40

10

parameter (rip2 - 514, ncycles -- 100)

double precision A(np2,np2), B(np2,np2)

npl = np2- 1

do 10 k = 1, ncycles

do 20i=2, npl

do 30j = 2, npl

B(ij) = 0.5 *. A(i,j) + 0.125 * (A(i-ld) + A(i+lj) +

A(ij-1) + A(ij+l))

continue

continue

do 40 i = 2, npl

do 50 j = 2, npl

A(i,j) = B(ij)
continue

continue

continue

Figure 6.4: Source code for Jacob£ program

execution time is estimated by the compiler as:

Communication cost - ncycles • (2 • (N_ > 1) * Shift(n/N2) + 2 • (N2 > 1) • Shift(n/N1))

Let us consider two mesh configurations, 1 x 16, and 4 x 4. The first of these corresponds

to a column partitioning of the arrays. It leads to two Shift operations being carried out in

every cycle, with a data size of n words each. The second configurations corresponds to a

_2-D" partitioning of the arrays, where both the rows and the columns are distributed on 4

processors each. That leads to four Shift operations in every cycle, each with a data size of n/4

words. For smaller values of n, the first scheme is better, since the start-up costs of sending

messages dominate the communication cost. As the data size is increased, the second scheme

starts becoming more attractive, since the total amount of data transferred is lower under that

scheme. Supplied with different values of n that are doubled in each step, PARADIGM starts

choosing the second scheme at n = 1024.

111

6.2.3 Application 3: DGEFA

The source code of the dgefa routine is shown in Appendix I. This code is a transformed

version of the one appearing in the Linpack library. The calls made to other Linpack routines

have been removed by function-inlining, performed by hand. Some of the important loops

where Parafrase-2 is currently unable to infer the absence of loop-carried dependence, have

been explicitly marked as doall. The dgefa program uses two arrays, A and IPVT, which do

not cross-reference each other. In fact, there is no constraint recorded on the distribution of

IPVT, and it is given the default, blocked distribution. There are constraints favoring cyclic

distribution for both dimensions of A, and none suggesting any need for blocked distribution.

The analysis of the program for obtaining the expected execution time shows parallelism

in both the mesh dimensions. The first dimension has a relatively greater amount of interpro-

cessor data movement taking place due to the determination of the pivot element along each

column, multicasting of that pivot element, and the exchange of rows required if the pivot

element belongs to a different row than the one being zeroed in the current step. The two-level

loop performing the update of array elements in each step requires a significant amount of com-

munication in both the mesh dimensions. In that step, a section of the row is multicast to all

the processors along the first mesh dimension, and a section of the column multicast along the

second mesh dimension. This data movement is shown pictorially in Figure 6.5. Both the array

dimensions axe shown t_ have blockeddistributionpurelyforthe ease of illustration,actually

they axe given cyclicdistributions.

The data partitioningscheme fordgefa was obtainedforthreedifferentdata sizes(n taking

the values 128, 256 and 512). For n = 128, the cost terms corresponding to the "extra"

communications in the firstmesh dimension lead to the configurationbeing biased in favorof

a smallernumber ofprocessorsin the firstdimension. The mesh configurationchosen for that

data sizeis2 x 8. However, forlargerdata sizes,a differenteffectbecomes more dominant.

Consider the multicastsbeing carriedout along the second dimension, as shown in Figure 6.5.

All ofthesemulticasts,correspondingto differentpositionsalong the firstdimension,take place

in parallel.Given a fixedarray size,reducing the number of processorsin the firstdimension

112

dim2

diml

!

I
I
I
I
I

I
!
I
!
i

!
!
!
I
!

_--
!
i
!
I
!

I

:::: :::

:::
::::¥::::::::::: :::

ii_i_i_ii|_!?iiiiiiii i_i!iiiiii [liii_[_!i!i_ii!ii Ei:::
::[.**::i]]]iiiiiiiii i_!_ii]!_iii]_]:i[]]]i[]]]_]]i]]]]]]]

:::
:::::::::::::::::::::::: ::::::::::::::::::::::::::::::::

..........i:.........::1:.......!:::]_::::::::::
:: "::::::::::::::.:.:.

::::::::::::::::::::: :::

: :" ": : : : :"" :" :........ "" " i :':" P" ":':':':':':':':

Figure 6.5: Data movement for updates of array elements in each step in dgefa

leads to an increase in the cost of this data movement, due to fewer parallel multicasts that now

involve a bigger data size. Thus, at larger data sizes, minimizing the sum of costs of mnlticasts

along both the dimensions requires the number of processors to be evenly balanced between

both the dimensions. The configuration chosen for both n = 256 and n = 512 is a 4 x 4 mesh,

though in the first case, the expected excution time is only marginally higher than that for a 2

x 8 configuration. In summary, the distribution functions chosen for the array .4 are:

f(Al,i) = (i-1) mod2, f(A2,j) = (j-1) mod8, forn=128

f(Al,i) = (i-1) mod4, f(A2,j) = (j-1) mod4, forn>128

6.2.4 Application 4: OLDA

01da is the dominant routine in the l:rfd program of Perfect Benchmarks. The original routine

uses nine arrays, some of which are aliases of each other (due to identical actual arguments

being used for the corresponding formal parameters in the only call to olda in the program).

We have factored in that information by directly modifying the source code, replacing multiple

names corresponding to aliased arrays by a single name. The final version of the code as

113

supplied to the compiler is shown in Appendix I. The distribution functions for various arrays

are determined by the compiler as follows:

f(XRSIQI, i) = f(V2,i) = f(XIJi, i)

f(XRSIQ2,j) = f(VI,j) = 0

= f(XRSPQI,i) = (i- 1) rood 16

Some pertinent sections of this program have been presented earlier in Section 2.2, where we

introduced the notion of constraints on data distribution. In that discussion, we described some

of the references that lead to alignment of XRSIQ1 with V2, and of XIJ1 with V2, We also

explained why the dimensions XRSIQ1, 1/2, and XIJ1 are given cyclic distribution.

Here we report on some additional experiences with this program, that have led to improve-

ments in the handling of subscripts of the type unknovn by PARADIGM. Consider the statement,

XRSPQ(mrsij) = XIJ(mj), marked by the label '80' in the program. If the compiler treats

mrsij as a subscript of the type unknown, the communication primitive obtained for the data

movement is ManyToManyMulticast. A similar statement appears in the program, marked by

the label '280'. The resulting communication costs for those statements represent a significant

part of the program execution time.

With an improved characterization of subscripts (described in Section 3.1), the compiler

actually performs a better analysis. The pass for induction variable recognition in Parafrase-2

recognizes the following relationship:

mrsij = (-mi + mi • mi + 2 * mj + 1640 • mrs - 1640)/2

Hence, the setup pass in PARADIGM finds the lhs reference with mrsij replaced by the above

expression. Note that mj, mi, and mrs are loop indices at levels 3, 2, and 1 respectively.

Thus, the subscript is of the form al * mj + x, where al = 1, and z is an expression with a

variation-level of 2. The subscript is regarded as being of the type single-index in the

m j-loop. The communication is placed outside the mj-loop, and the compiler now recognizes

the possibility of using Transfers to implement the data movement. That leads to much lower

communication costs for the given statement.

114

E Array

FS

Size

193 x 33 x 4

W 194 x 34 x 4

FW 193 x 33 x 4

DW 194 x 34 x 4

Distribution Functions

_,0,0

0,0
_,0,0
L(i- 1)/16J,o, o

DP 195x 35 L(i-D/16J,o

RADJ 194 x 34 L(i- 1)/16],0

DTL 194 x 34 L(i- 1)/16J, 0

P 194 x 34 L(i- 1)/16J, 0
RADI 194 x 34

VOL 194 x 34

EP 193 x 33

DIS4 193 x 33

1)/16J,0
I)/16,

L(i- 1)/16J,o
DIS2 193 x 33 L(i- 1)/16J, 0

Table 6.2: Distribution functions for arrays in dflux

6.2.5 Application 5A: DFLUX

The source code of the dflux routine, taken from the flo52 program, is shown in Appendix I.

The distribution functions for various arrays in the program, as determined by PARADIGM,

are shown in Table 6.2. All of the arrays are distributed by rows in a blocked manner on

16 processors. There are numerous constraints that lead to mutual alignment of the first

dimensions of all the arrays, and also of their second dimensions. There are no conflicts between

any two alignment constraints. Similarly, all constraints on the method of partitioning favor

blocked distribution of the first two dimensions of all the arrays. The step reducing the number

of mesh dimensions collapses the one to which the third dimensions of arrays FS, W, FW and

DW are mapped. The analysis of the expected execution time for the 2-D mesh shows a

number of Shift operations taking place along both the mesh dimensions, at different points

in the program. The cost estimates predict that the best performance would be achieved by

sequentializing the second dimension (which has fewer elements) of all the arrays. We expect

that an increase in the data size and the number of processors in the system would lead to cases

where distributing both the dimensions of each array becomes better, as the communication

costs begin to get dominated by data transfer times rather than the start-up times for messages.

115

However,the best mesh configuration would still have fewer processors in the second dimension

than the first, as the first dimension of each array has significantly more elements than the

second dimension.

6.2.6 Application 5B: EFLUX

Eflux is the second routine chosen from the flo52 program. The distribution functions selected

for all the arrays are shown below:

f(Xl,i) = f(Wx,i) = f(DWl,i) = f(FS1,i) = f(Pl,i)

f(X2,j) = f(W2,j) = f(DW2,j)= f(FSz,j) = f(P2,J)

f(X3, k) - f(W3, k) "- f(DW3, k) - f(FS3, k) - 0

- 1)/16j

= 0

As can be seenfrom the program listing,the efltucroutineperforms computations quitesimilar

to thosein the cl.fZuxroutine.Again, there are no conflictsseen between any alignment con-

straints,and allconstraintson the method of partitioningfavor blocked distributionof array

dimensions. The arrayswith identicalnames in the eflu.xand dfZux routinesin factcorre-

spond to the same globalarraysin the flo52 program. The factthat both the routineschoose

the same distributionfunctionsforthem isan encouragingsignforthe performance of flo52.

Itmeans that between those two routines,there would be no re-distributionrequiredforthe

given arrays.

6.3 Performance Results

In this section, we present results on the evaluation of data partitioning schemes selected for

some of the programs by PARADIGM. This involves developing multiple parallel program ver-

sions corresponding to different partitioning schemes, and comparing the actual performance

of those versions on the iPSC/2.

116

6.3.1 Application I: TRED2

We now describethe resultsobtained fordifferentdata-parallelversionsofthe fred2 program.

Startingwith the sequentialprogram, each versionwas obtained by hand-simulatingthe com-

pilationprocess(correspondingto a sophisticatedcompiler)on that program, under the given

data partitioningscheme.

As describedearlier,the data distributionscheme selectedby PARADIGM is- distribute

arrays A and Z by rows in a cyclic fashion, distribute D and E also in a cyclic manner, on all

the N processors. The first version corresponds to this scheme, referred to as row cyclic. The

presence of conflicts in the CAG for trQd2 suggests that another reasonable scheme would be

one where the arrays D and E are aligned with the second, rather than the first dimension of

arrays A and Z. If these dimensions are further distributed on all the N processors (to satisfy

constraints to sequentialize those dimensions of A and Z not aligned with D and E), we obtain

a scheme where A and Z are distributed by columns, again in a cyclic manner. That forms the

basis for the second version.

The remaining versions correspond to "bad" choices (according to compiler-generated es-

timates) that might be made on certain data distribution parameters. The third version is

based on a variant of the row-cyclic scheme, where both the rows and the columns of A and

Z are distributed on more than one processor. All other characteristics of the first scheme are

retained, D and E are still aligned with the first dimension of A and Z, and all dimensions

are distributed in a cyclic manner. It is quite possible for a human programmer to choose

such a scheme, which we have referred to as 2-D cyclic. The fourth version is also a variant

on the preferred row-cyclic scheme, where the rows of A and Z (and the arrays D and E) are

distributed in a blocked, rather than cyclic manner.

The programs were run for two different data sizes corresponding to the values 256 and 512

for n. The plots of performance of various versions of the program are shown in Figures 6.6 and

6.7. The sequential time for the program is not shown for the case n = 512, since the program

could not be run on a single node due to memory limitations. The data partitioning scheme

selected by PARADIGM performs much better than other schemes for that data size, as shown

117

T
i

m
e

i
n

B
e
c

1650

1550 -

1450 -

1350

1250

1150

1050 -

950 -

850 -

750 -

650

G row cycUc O column cycUc

• row blocked ®2-Dcyc_c

i i I I

0 4 8 12 16 20

Number of processors

Figure 6.6: Performance of tred2 on Intel iPSC/2 for data size n = 512

in Figure 6.6. For smaller data size (Figure 6.7), and for fewer than 16 processors, the column-

cyclic scheme performs slightly better. Based on the estimates generated by PAKADIGM, this

is not entirely unexpected, given the close conflict between alignment constraints. When all of

the 16 processors are being used, the row-cyclic scheme still performs the best.

All other data distribution decisions too are validated by the results. To recall the decision

process leading to the partitioning of array dimensions in a cyclic manner, the sum of quality

measures of constraints favoring cyclic distribution was about three orders of magnitude higher

than that for blocked distribution. That is confirmed by the relatively poor performance of

the row-blocked scheme. The estimates of program execution times guiding the final selection

of mesh configuration showed the 16 x 1 mesh performing much better than the 4 x 4 mesh,

where both the dimensions of A and Z were distributed. That decision is again confirmed by

the higher execution times obtained by the 2-D cyclic scheme as compared to the row-cyclic

scheme.

118

T
i

m

e

i
n

S

e

c

370

330

290

250

210

170

130

O row cyclic O column cyclic

• row blocked ® 2-D cyclic

I I I I

4 8 12 16

Number of processors

2O

Figure 6.7: Performance of 1:red2 on Intel iPSC/2 for data size n = 256

6.3.2 Application 2: JACOBI

We now report results on the performance of different versions of the Jacobi program on the

iPSC/2. Our compiler selects a column partitioning for smaller data sizes, and a 2-D par-

titioning (where both rows and columns are distributed on the same number of processors)

for larger data sizes. In each case, the compiler chooses a blocked method of partitioning for

all distributed array dimensions. The first two versions developed by us correspond to these

partitioning schemes. The remaining two versions are based on variants of the above schemes,

where the array dimensions are instead distributed in a cyclic manner.

The execution times obtained for each of those versions running on the 16-processor iPSC/2

are shown in Table 6.3. These results confirm that the 2-D partitioning starts performing better

than the column partitioning for larger array sizes. The excessive communication requirements

resulting from the naive decision to partition the array dimensions in a cyclic manner are re-

flected in the poor performance of the last two versions. Those versions also require much more

space to hold the non-local data received from other processors through collective communi-

119

Data Size Column Blocked 2-D Blocked Column Cyclic 2-D Cyclic

n Time (s) Time (s) Time (s) Time (s)

64 1.28 L45 1.66 2.15
128 4.10 4.12 5.82 7.33

256 15.39 14.87 23.29 28.72

512 64.43 59.66 96.64 113.66

1024 257.84 243.24 386.94

Table 6.3: Performance of different versions of Jacobi on iPSC/2

cation. In fact, the program with 2-D cyclic partitioning could not be run for the data size

n = 1024 due to memory limitations on each processor.

While these results confirm the compiler's prediction regarding the suitability of the 2-D

partitioning at larger data sizes, the actual data size at which that scheme starts performing

better than column partitioning is not predicted very accurately. We believe that this difference

between the predicted value (n = 1024) and the observed value (n = 256) is due to the cost

function used for the Shift operation being slightly inaccurate. The primary focus of our work

in estimating communication costs has been to obtain the estimates in terms of cost functions of

various communication primitives (which is performed satisfactorily in this case). Given more

accurate performance characteristics of such primitives, obtained by approaches proposed in

the literature, such as the "training set" method [7], we believe our compiler would do an even

better job of selecting good data partitioning schemes.

6.3.3 Application 3: OLDA

The data partitioning scheme chosen by PARADIGM for the olda program has been described

in the previous section. The array XRSIQ is distributed by rows in a cyclic manner, V is

distributed by columns in a cyclic manner, and the arrays XIJ and XRSPQ are also dis-

tributed in a cyclic manner. The first parallel program version we developed corresponds to

this partitioning scheme, referred to as 1-D cyclic. The other version is based on a variant of

120

T
i
m

e

i
n

S
e
C

65O

600 -

550 -

500

450

400

350

300

250 -

200 -

150 -

100

G 1-D cyclic 0 I-D blocked

I I I I

0 4 8 12 16 20

Number of processors

Figure 6.8: Performance of olda on Intel iPSC/2

the firstscheme, where all the distributed array dimensions are given a blocked distribution

instead. This method of partitioning isreferred to as I-D blocked.

The performance of the two parallelprogram versions isshown in Figure 6.8. The sizesofthe

arrays are shown in the source listingof olda in Appendix I.The method of partitioning chosen

by PARADIGM, 1-D cyclic,leads to a significantlybetter performance than the other method.

This confirms the desirabilityof the decision taken by PARADIGM to distribute alldimensions in

a cyclicmanner. There are numerous other methods of data partitioning possible for the olda

program, such as those in which both the dimensions of XRSIQ and V axe distributed on more

than one processor, and those in which the alignment between the dimensions of XRSIO, and

V isreversed (XRSIQI being aligned with VI, and XRSIQ2 with V2). A manual inspection

of the program shows that each of those schemes would lead to much higher communication

overheads, and worse performance. These results show the success of PARADIGM in obtaining

a good data partitioning scheme for the olda program too.

121

CHAPTER 7

CONCLUSIONS

In this thesis, we have presented a new approach, the constraint-based approach, to the problem

of automatic data partitioning of programs on multicomputers. We have validated these ideas

through the development of a compiler called PARADIGM, that takes data partitioning decisions

on Fortran 77 programs, to be parallelized and executed on distributed memory machines. Our

approach is quite general, and applicable to a large class of programs having references that

can be analyzed at compile time.

7.1 Contributions

Our main contributions to the problem of automatic data partitioning are:

• Analysis of the entire program: Our approach looks at data distribution from the per-

spective of performance of the entire program, not just that of some individual program

segments. The notion of constraints makes it easier to capture the requirements imposed

by different parts of the program on the overall data distribution. Since constraints as-

sociated with different statements specify only the relevant aspects of requirements on

data distribution, the compiler is often able to combine constraints affecting different

parameters relating to the distribution of the same array. Our studies on numeric pro-

grams confirm that situations where such a combining is possible arise frequently in real

programs.

122

• Balance between parallelization and communication considerations: Both communication

and computational costs are taken into account during the selection of data partitioning

scheme. Each data distribution parameter affecting both components is determined by

an algorithm that is driven by the minimization of the overall program execution time.

• Pruning of the search space: The distribution functions used for arrays allow for a rich

variety of data distributions to be expressed. But, that also leads to a large space of

possible data partitioning schemes, that cannot be searched exhaustively for the optimal

solution. Our approach is significantly different from all others that have so far been

proposed in the extent to which this search space is pruned via heuristics that lead to

independent decisions on numerous distribution parameters.

• General methodology for static performance estimation: To enable the compiler to be

guided by performance estimates in the process of taking data distribution decisions, we

have developed a machine-independent methodology for performance estimation. This

methodology allows estimation of the extent of data-parallelism exhibited, and also the

amount of communication costs incurred by a program with a given data partitioning

scheme, without actually generating the data-parallel program. Such an analysis cast be

used not only by a different automatic data partitioning system, but also by a compiler

generating the SPMD program, to evaluate the expected benefits of different competing

optimizations.

• Applicability to compiler-directed generation of communication: As part of estimating the

communication costs of a program, the compiler detects opportunities for optimizations

in generating communication, like combining messages, and using collective communica-

tion primitives. In particular, the techniques we have developed for exploiting collective

communication represent a significant advance over other currently known methods, and

can contribute to substantial improvements in program performance on massively parallel

systems.

• Results on real-life scientific application programs: Finally, we observe that the PARADIGM

compiler has been successfully used to obtain data partitioning schemes for real-life pro-

123

grams.To the best of our knowledge, these are the first set of results demonstrating the

success of automatic data partitioning on a significant class of Fortran programs.

Our approach to data partitioning has its limitations too. The permitted set of data dis-

tribution functions is weU-suited only to numeric programs with a regular structure. Irregular

computations, such as those involving sparse matrices and unstructured grids are not ade-

quately supported. During the process of obtaining quality measures relating to distributions

of specific arrays, the compiler often ignores possible optimizations like combining messages

corresponding to different arrays. Also, due to the underlying complexity of the problem of

estimating performance, the compiler uses a number of simplifying assumptions. For example,

it ignores the delays due to congestion in the interconnection network, and does not attempt

to characterize the locality of data within a processor, that affects cache performance.

7.2 Future Directions

In this research, we have developed a basic framework for dealing with the problem of automatic

data partitioning on multicomputers. There are a number of directions in which this work can

be extended, some of which are described below:

• Inter'procedural analysis : So far, we have used in-line expansion of procedure calls, or

restricted ourselves to individual procedures while analyzing real application codes with

PARADIGM. Clearly, there is a need to develop techniques for interprocedural analysis.

A number of researchers have worked on this problem for improving the effectiveness

of parailelizing compilers [9, 10, 76, 49, 1]. Those ideas need to be extended to allow

determination of constraints and their quality measures across procedure boundaries, and

to summarize such information for data accessed in various procedures.

• Redistribution of data : Currently, PARADIGM assigns a fixed distribution to each array,

that remains unchanged during the entire program. For some programs, it may be desir-

able to partition the data one way for a particular segment, and then repartition it before

124

movingto the next segment.This apparentlytougherproblem (where the distribution

of data is allowed to change) can be mapped to the original problem of obtaining a fixed

distribution, through transformations like array renaming. However, techniques need to

be developed to apply those transformations, where needed, in an automated manner.

• Other distribution parameters : Currently, PARADIGM does not attempt to evaluate the

benefits of replicating an array as compared to partitioning it across processors. The

option of replication has so far been restricted to scalars and small arrays, i.e., those

with sizes less than a certain threshold. For many programs, replicating bigger arrays,

particularly the read-ouly arrays, can lead to considerable savings in communication costs.

However, the compiler would have to take such decisions keeping in mind the memory

limitations on each processor. Thus, it would be interesting to extend the compile-time

analysis to determine which arrays (or array dimensions) to replicate, given a certain

amount of memory.

Another parameter, the offset in the distribution of an array dimension is currently fixed,

it is given a constant value of one for all the dimensions. In some programs, there are likely

to be situations where the desired alignment of elements in two arrays requires different

values to be given to offsets in their distributions. We expect that the techniques we have

developed to determine the block sizes of array dimensions can be extended to obtain the

desirable offset values as well.

• Irregular problems : Our research has mainly been directed towards applications with a

regular structure, that are amenable to static analysis. Many researchers have started

developing systems that provide compiler and runtime support for the task of partition-

ing computation and generating communication for irregular problems [67, 44, 13, 14].

It would be interesting to explore possibilities of similar support for decisions on data

partitioning through extensions of our approach.

As an example of a simple extension to our approach, consider the problem of various

array sizes and loop bounds being unknown at compile time. The symbolic expressions

that PArtADIGM obtains for the times spent on communication and computation can be

125

stored, and code can be generated to evaluate those expressions at run time, and take

decisions on data partitioning accordingly. However, in order to handle irregularities like

unknown data access patterns well, more sophisticated techniques need to be developed.

126

BIBLIOGRAPHY

[1] F. Allen, M. Burke, P. Charles, It. Cytron, and J. Ferrante. An overview of the PTRAN

analysis system for multiprocessing. Journal of Parallel and Distributed Computing, 5:617-

640, 1988.

[2] J. It. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form.

A CM Transactions on Programming Languages and Systems, 9(4):491-542, October 1987.

[3] J. It. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control dependence

to data dependence. In Proc. lOth Annual A CM Symposium on Principles of Programming

Languages, pages 177-189, January 1983.

[4] F. Andre, J. Pazat, and H. Thomas. Pandore: A system to manage data distribution. In

Proc. I990 A CM International Conference on Supercomputing, Amsterdam, The Nether-

lands, June 1990.

[5] It. Arlauskas. iPSC/2 system: A second generation hypercube. In Proc. The 3rd Conference

on Hypercube Concurrent Computers and Applications, Pasadena, CA, January 1988.

[6] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive environment for

data partitioning and distribution. In Proc. Fifth Distributed Memory Computing Confer-

ence, April 1990.

[7] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static performance estimator to

guide data partitioning decisions. In Proc. Third A CM SIGPLAN Symposium on Principles

and Practices of Parallel Programming, Williamsburg, VA, April 1991.

[8] U. Banerjee. Unimodular transformations of double loops. In Proc. Third Workshop on

Programming Languages and Compilers .for Parallel Computing, Irvine, California, August

1990.

127

[9] M. Burke and R. Cytron. Interprocedural dependence analysis and paraUelization. In Proc.

SIGPLAN '86 Symposium on Compiler Construction, pages 162-175, June 1986.

[10] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedural constant prop-

agation. ACM, pages 152-161, 1986.

[11] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiprocessors.

The Journal of Supercomputing, 2:151-169, October 1988.

[12] B. Chapman, H. Herbeck, and H. Zima. Automatic support for data distribution. In Proc.

6th Distributed Memory Computing Conference, Portland, Oregon, April 1991.

[13] C. Chase, A. Cheung, A. Reeves, and M. Smith. Paragon: A parallel programming environ-

ment for scientific applications using communication structures. In Proc. 1991 Conference

on Parallel Processing, St. Charles, IL, August 1991.

[14] C. Chase, K. Krowley, J. Saltz, and A. Reeves. Compiler and runtime support for irreg-

ularly coupled regular meshes. In Proc. 6th A CM International Conference on Supercom-

puting, Washington D.C., July 1992.

[15] M. Chen, Y. Choo, and J. Li. Compiling parallel programs by optimizing performance.

The Journal of Supercomputing, 2:171-207, October 1988.

[16] M. Chert, Y. Choo, and J. Li. Theory and pragmatics of compiling efficient parallel code.

Technical Report YALEU/DCS/TR-760, Yale University, December 1989.

[17] The Perfect Club. The perfect club benchmarks: Effective performance evaluation of

supercomputers. International Journal of Supercomputing Applications, 3(3):5-40, Fall

1989.

[18] T. H. Cormen, C. E. Leiserson, and It. L. Rivest. Introduction to Algorithms. The MIT

Press, 1989.

[19] G. Pfister et al. The IBM Research parallel processor prototype (RP3): introduction and

architecture. In Proc. 1985 International Conference on Parallel Processing, 1985.

[20] J. Ferrante, K. J. Ottenstein, and J. D. Warren. Program dependence graph and its use in

optimization. A CM Transactions on Programming Languages and Systems, 9(3):319-349,

July 1987.

128

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[3o]

[31]

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on

Concurrent Processors. Prentice Hall, 1988.

M. Gerndt. Updating distributed variables in local computations. Concurrency - Practice

f_ Experience, 2(3):171-193, September 1990.

M. Gupta and P. Banerjee. Automatic data partitioning on distributed memory multi-

processors. In Proc. Sixth Distributed Memory Computing Conference, Portland, Oregon,

April 1991.

M. Gupta and P. Banerjee. Compile-time estimation of communication costs on multicom-

puters. In Proc. 6th International Parallel Processing Symposium, Beverly Hills, California,

March 1992.

M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques for

parallelizing compilers on multicomputers. IEEE Transactions on Parallel and Distributed

Systems, 3(2):179-193, March 1992.

M. Gupta and P. Banerjee. A methodology for high-level synthesis of communication on

multicomputers. In Proc. 6th ACM International Conference on Supercomputing, Wash-

ington D.C., July 1992.

M. R. Haghighat and C. D. Polychronopoulos.Symbolic program analysisand optimization

for parallelizingcompilers. In Proc. Fifth Workshop on Languages and Compilers for

ParallelComputing, New Haven, CT, August 1992.

W. Hillis and G. Steele Jr. Data parallel algorithms. Communications of the ACM,

29(12):1170-1183, 1986.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An overview of the

Fortran D programming system. In Proceedings of the Fourth Workshop on Languages and

Compilers for Parallel Computing, Santa Clara, CA, August 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations for Fortran D on

MIMD distributed-memory machines. In Proc. Supercomputing '91, Albuquerque, NM,

November 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Evaluation of compiler optimizations for

Fortran D on MIMD distributed-memory machines. In Proc. 6th ACM International Con-

ference on Supercomputing, Washington D.C., July 1992.

129

[32] C. T. Ho. Optimal Communication Primitives and Graph Embeddings on Hypercubes. PhD

thesis, Yale University, 1990.

[33] J. M. Hsu and P. Banerjee. A message passing coprocessor for distributed memory multi-

computers. In Proc. Supercomputing 90, New York, NY, November 1990.

[34] D. E. Hudak and S. G. Abraham. Compiler techniques for data partitioning of sequentially

iterated parallel loops. In Proc. 1990 International Conference on Supercomputing, pages

187-200, Amsterdam, The Netherlands, June 1990.

[35] K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic parallelization

system for distributed memory parallel computers. In Proc. Fifth Distributed Memory

Computing Conference, April 1990.

[36] Intel Corporation. iPSC/2 and iPSC/860 User's Guide, June 1990.

[37] $. L. Johnsson. Communication efficient basic linear algebra computations on hypercube

architectures. Journal of Parallel and Distributed Computing, 4(2), April 1987.

[38] S. L. Johnsson. Performance modeling of distributed memory architectures. Journal of

Parallel and Distributed Computing, pages 300-312, August 1991.

[39] A. H. Karp. Programming for parallelism. Computer, 20(5):43-57, May 1987.

[40] K. Kennedy and U. Kremer. Automatic data alignment and distribution for loosely syn-

chronous problems in an interactive programming environment. Technical Report TR91-

155, Rice University, April 1991.

[41] K. Knobe, J. Lukas, and G. Steele Jr. Data optimization: Allocation of arrays to reduce

communication on SIMD machines. Journal of Parallel and Distributed Computing, 8:102-

118, 1990.

[42] K. Knobe and V. Natarajan. Data optimization: Minimizing residual interprocessor data

motion on SIMD machines. In Proc. Third Symposium on the Frontiers of Massively

Parallel Computation, October 1990.

[43] C. Koelbel and P. Mehrotra. Compiler transformations for non-shared memory machines.

In Proc. 1989 International Conference on Supercomputing, May 1989.

[44] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed

execution. IEEE Transactions on Parallel and Distributed Systems, 2(4):440-451, October

1991.

130

[45] D. Kuck, E. Davidson, D. Lawrie, and A. Sameh. Parallel computing today and the Cedar

approach. Science, 231:967-974, February 1986.

[46] D. J. Kuck, R. H. Kuhn, B. Leasure, D. A. Padua, and M. J. Wolfe. Dependence graphs and

compiler optimizations. In Proc. Eighth A CM Symposium on Principles of Programming

Languages, pages 207-218, January 1981.

[47] J. Li and M. Chen. Generating explicit communication from shared-memory program

references. In Proc. Supercomputing '90, New York, NY, November 1990.

[48] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing between

distributed arrays. In FrontiersgO: The 3rd Symposium on the Frontiers of Massively

Parallel Computation, CoUege Park, MD, October I990.

[49] Z. Li and P. C. Yew. Efficient interprocedural analysis for program parallelization and

restructuring. In ACM SIGPLAN PPEALS, pages 85-99, 1988.

[50] M. Mace. Memory Storage Patterns in Parallel Processing. Kluwer Academic Publishers,

Boston, MA, 1987.

[51] NCUBE Corporation. nCUBE 2 Processor Manual, 1990.

[52] M. O'Boyle and G. A. Hedayat. A transformational approach to compiling Sisal for dis-

tributed memory architectures. In Proc. 6th A CM International Conference on Supercom-

puting, Washington D.C., July 1992.

[53] M. O'Boyle and G. A. Hedayat. Data alignment: Transformations to reduce communication

on distributed memory architectures. In Proc. SHPCC'92, The Scalable High Performance

Computing Conference, Williamsburg, April 1992.

[54] M. O'Boyle and G. A. Hedayat. Load balancing of parallel affine loops by unimodular

transformations. In Proc. The European Workshop on Parallel Computing, Barcelona,

Spain, March 1992.

[55] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers.

Communications of the A CM, 29(12):1184-1201, December 1986.

[56] Parasoft Corporation. Express User's Manual, 1989.

[57] C. Polychronopoulos, M. Girkar, M. ttaghighat, C. Lee, B. Leung, and D. Schouten.

Parafrase-2: An environment for parallelizing, partitioning, synchronizing and scheduling

131

programsonmultiprocessors.In Proc. 1989 International Conference on Parallel Process-

ing, August 1989.

[58] It. C. Prim. Shortest connection networks and some generalizations. Bell System Technical

Journal, pages 1389-1401, 1957.

[59] M.J. Quinn and P. J. Hatcher. Data-parallel programming on multicomputers. IEEE

Software, 7:69--76, September 1990.

[60] J. Ramanujam and P. Sadayappan. A methodology for parallelizing programs for mul-

ticomputers and complex memory multiprocessors. In Proc. Supercomputin9 '89, pages

637-646, November 1989.

[61] J. Ramanujam and P. Sadayappan. Compile-time techniques for data distribution in

distributed memory machines. IEEE Transactions on Parallel and Distributed Systems,

2(4):472-481, October 1991.

[62] A. Rogers and K. Pingali. Process decomposition through locality of reference. In Proc.

SIGPLAN '89 Conference on Programming Language Design and Implementation, pages

69-80, June 1989.

[63] J. Rose and G. Steele Jr. An extended C language for data parallel programming. In Proc.

Second ACM International Conference on Supercomputing, Santa Clara, CA, May 1987.

[64] M. Rosing, R. Schnabel, and R. Weaver. The DINO parallel programming language.

Journal of Parallel and Distributed Computing, 13(1):30-42, September 1991.

[65] M. Rosing and R. P. Weaver. Mapping data to processors in distributed memory computa-

tions. In Proc. Fifth Distributed Memory Computing Conference, Charleston, S. Carolina,

April 1990.

[66] R. RuM and M. Annaratone. Parallelization of Fortran code on distributed-memory parallel

processors. In Proc. 1990 A CM International Conference on Supercomputin9, Amsterdam,

The Netherlands, June 1990.

[67] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling and execu-

tion of loops on message passing machines. Journal of Parallel and Distributed Computing,

8:303-312, 1990.

132

[68] V. Sarkar. Determining average program execution times and their variance. In Proc.

A CM SIGPLAN Conference on Programming Language Design and Implementation, June

1989.

[69] R. Sawdayi, G. Wagenbreth, and J. WiUiamson. MIMDizer: Functional and data decom-

position; creating parallel programs from scratch, transforming existing Fortran programs

to parallel. In J. Saltz and P. Mehrotra, editors, Compilers and Runtime Software for

Scalable Multiprocessors. Elsevier, Amsterdam, The Netherlands, 1991.

[70] Z. Shen, Z. Li, and P.-C. Yew. An empirical study of Fortran programs for parallefizing

compilers. IEEE Transactions on Parallel and Distributed Systems, 1(3):356-364, July

1990.

[71] D. G. Socha. An approach to compiling single-point iterative programs for distributed

memory computers. In Prac. Fifth Distributed Memory Computing Conference, Charleston,

S. Carolina, April 1990.

[72] It. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of Computing,

1(2):146-160,1972.

[73]N. Tawbi and P. Feautrier.Processor allocationand loop schedulingon multiprocessor

computers. In Proc. 6th ACM International Conference on Supercomputing, Washington

D.C., July 1992.

[74] S. Thakkar, P. Gifford, and G. FieUand. The Balance multiprocessor system. IEEE Micro,

pages 57-69, February 1988.

[75] Thinking Machines Corporation. The Connection Macine CM-5 Technical Summary, Oc-

tober 1991.

[76] It. Triolet, F. Irigion, and P. Feautrier. Direct parallelization of call statements. In Proc.

SIGPLAN '86 Symposium on Compiler Construction, pages 176-185, June 1986.

[77] P. S. Tseng. A parallelizing compiler for distributed-memory parallel computers. In Proc.

SIGPLAN '90 Conference on Programming Language Design and Implementation, White

Plains, NY, June 1990.

[78] S. Wholey. Automatic data mapping for distributed-memory parallel computers. In Proc.

6th A CM International Conference on Supercomputing, Washington D.C., July 1992.

133

[79] M. Wolfe and U. Banerjee. Data dependence and its application to parallel processing.

International Journal of Parallel Programming, 16(2):137-178, April 1987.

[80] M. J. Wolfe. More iteration space tiling. In Proc. Supercomputing 89, Reno, Nevada,

November 1989.

[81] H. Zima, H. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD

paxallelization. Parallel Computing, 6:1-18, 1988.

134

AP PEND IX I

BENCHMARK PROGRAMS

1.1 DGEFA

3O

PROGRAM DGEFA

PARAMETER(N=512)

DOUBLE PRECISION A(N,N)

INTEGER IPVT(N)

DOUBLE PRECISION T

INTEGER J,K,L,NMI,INFO

INFO = 0

NM1 = N- 1

IF (NM1 .LT. 1) GO TO 70

DO 60K=I, NM1

L=I

DMAX - DABS(A(K,K))

DO 30 I = K+I,N

IF(DABS(A(I,K)).LE.DMAX) GO TO 30

L=I

DMAX = DABS(A(I,K))

CONTINUE

IPVT(K) = L

135

IF (A(L,K) .EQ. o.0D0) GO TO 40

IF (L .EQ. K) GO TO 10

T = A(L,K)

A(L,K) ----A(K,K)

A(K,K) = T

10 CONTINUE

DO 15 I -- K,N

A(I,K) = (-1.0D0/A(K,K))*A(I,K)

15 CONTINUE

CDOALL 80 J ----K+I, N

T ---A(L,J)

A(L,J)= A(K,J)

A(K,J) = T

CDOALL 35 I= K+I,N

A(I,J)= A(I,J)+ A(K,J)*A(I,K)

35 CONTINUE

8O CONTINUE

GO TO 50

4O CONTINUE

INFO = K

5O CONTINUE

60 CONTINUE

7O CONTINUE

IPVT(N) -- N

IF (A(N,N).EQ. 0.0D0) INFO = N

STOP

END

136

1.20LDA

10

20

30

40

PROGRAM OLDA

PARAMETER(NUM=32,NORB=32,MORB=32,NDIM=32,NUM2=278784)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DOUBLE PRECISION V(NDIM,NDIM)

DOUBLE PRECISION XRSPQ(NUM2)

DOUBLE PRECISION XRSIQ(MORB,MORB),XIJ(NUM)

DATA ZERO/0.0D+00/

NRS--(NUM*(NUM+I))/2

NP--NUM

NQ--NUM

MRSIJ0--0

MRSPQ---0

DO 100 MRS----I,NRS

DO 10 MQ---I,NQ

DO 10 MI--I,MORB

XRSIQ(MI,MQ)=ZERO

DO 4O MP--I,NP

DO 30 MQ--I,MP

MRSPQ=MRSPQ+I

VAL--XRSPQ(MRSPQ)

IF(VAL.EQ.ZERO) GO TO 30

DO 20 MI=I,MORB

XRSIQ(MI,MQ)=XRSIQ(MI,MQ)+VAL*V(MP, MI)

XRSIQ(MI,MP)=XRSIQ(MI,MP)+VAL*V(MQ,MI)

CONTINUE

CONTINUE

CONTINUE

MRSIJ=MRSIJ0

DO 90 MI=I,MORB

137

DO 50 MJ=I,MI

50 XIJ(MJ)=ZERO

DO 70 MQ--1,NQ

VAL--XRSIQ(MI,MQ)

IF(VAL.EQ.ZERO) GO TO 70

DO 60 MJ=I,MI

60 XIJ(MJ)=XIJ(MJ)+VAL*V(MQ,M J)

7O CONTINUE

DO 8O MJ=I,MI

MRSIJ=MRSIJ+I

80 XRSPQ(MRSIJ)=XIJ(MJ)

9O CONTINUE

MRSIJ0=MRSIJ0+NRS

100 CONTINUE

NIJ=(MORB*(MORB+I))/2

MRSIJ=0

DO 120 MRS=I,NRS

MIJI_----0

MAX=MRS

IF(MAX.GT.NIJ) MAX=NIJ

DO 110 MIJ=I,MAX

DUM=XRSPQ(MRSIJ+MIJ)

XRSPQ(MRSIJ+MIJ)=XRSPQ(MIJRS+MRS)

XRSPQ(MIJRS+MRS)=DUM

110 MIJRS=MIJRS+NRS

120 MRSIJ=MRSIJ+NRS

NR=NUM

NS=NUM

MIJKL=0

MIJRS=0

138

MIJ=0

MLEFT=NRS-NIJ

DO 300 MI=I,MORB

DO 300 MJ=I,MI

MIJ=MIJ÷I

DO 210 MS=I,NS

DO 210 MK=MI,MORB

210 XRSIQ(MK,MS)=ZERO

DO 240 MR=I,NR

DO 230 MS---I,MR

MIJRS=MIJRS÷I

VAL=XRSPQ(MIJRS)

IF(VAL.EQ.ZERO) GO TO 230

DO 220 MK=MI,MORB

XRSIQ(MK,MS)=XRSIQ(MK,MS)+VAL*V(MR,MK)

XRSIQ(MK,MR)=XRSIQ(MK,MR)+VAL*V(MS,MK)

22o CONTINUE

230 CONTINUE

240 CONTINUE

LMIN=MJ

LMAX=MI

DO 290 MK=MI,MORB

DO 250 ML=LMIN,LMAX

250 XIJ(ML)=ZERO

DO 270 MS=I,NS

VAL=XRSIQ(MK,MS)

IF(VAL.EQ.ZERO) GO TO 270

DO 260 ML=LMIN,LMAX

260 XIJ(ML)=XI J(ML)÷VAL*V(MS,ML)

270 CONTINUE

139

DO 280 ML=LMIN,LMAX

MIJKL=MIJKL+I

280 XRSPQ(MIJKL)=XIJ(ML)

LMIN=I

LMAX=MK+I

29O CONTINUE

MIJKL--MIJKL+MIJ+MLEFT

3OO CONTINUE

STOP

END

1.3 DFLUX

lO

PROGRAM DFLUX

PARAMETER (I2=194,J2=34,IL=193, JL=33)

PARAMETER (I2P1---195,J2Pl=35)

REAL RADI(I2,J2),RADJ(I2,J2),FW(IL,JL,4),RFIL

REAL FS(IL, J2,4),DW(I2,J2,4)

INTEGER ISYM

REAL W(I2,J2,4),P(I2,J2),VOL(I2,J2),DTL(I2,J2)

REAL DP(I2P1,J2P1),EP(IL,JL),DIS2(IL,JL),DIS4(IL,JL)

SFIL = 1. -RFIL

FIS2 = .5*RFIL*VIS2

FIS4 = RFIL*VIS4/64.

DO 3O J=2,JL

DO 10 I=2,IL

DP(I,J) = ABS((P(I+I,J) -2.*P(I,J) +P(I-1,J))/

• (P(I+I,J)+2.*P(I,J) +P(I-1,J)))

CONTINUE

IF (ISYM.LT.0) GO TO 11

140

II

12

14

15

16

17

18

DP(2,J) -- 0.

DP(IL,J) -- 0.

DP(I,J) = DP(IL,J)

DP(IL+I,J) = DP(2,J)

DP(IL+2,J) -- DP(3,J)

DO 12 I=2,IL

EP(I,J) = MAX(DP(I-I,J),DP(I,J),DP(I+I,J),DP(I+2,J))

CONTINUE

IF (ISYM.GE.0) EP(IL,J) = 0.

EP(1,J) -- EP(IL,J)

IF (VIS0.LT.0.) GO TO 15

DO 14 I---I,IL

FIE = VOL(I+I,J)/DTL(I+I,J) +VOL(I,J)/DTL(I,J)

DIS2(I,J) ----FIL*FIS2*EP(I,J)

DIS4(I,J) = FIL*FIS4

DIS4(I,J) -- DIM(DIS4(I,J),DIS2(I,J))

CONTINUE

GO TO 17

DO 16 I=I,IL

FIL = RADI(I+I,J) +RADI(I,J)

DIS2(I,J) ----FIL*FIS2*EP(I,J)

DIS4(I,J) = FIL*FIS4

DIS4(I,J) = DIM(DIS4(I,J),DIS2(I,J))

CONTINUE

DO 18 N--I,4

DO 18 I---I,IL

FS(I,J,N) ----W(I+I,J,N) -W(I,J,N)

CONTINUE

DO 2O I--I,IL

FS(I,J,4)= FS(I,J,4)+P(I+I,J)-P(I,J)

141

20 CONTINUE

DO30N--I,4

IF (ISYM.LT.0) GO TO 25

FS(I,J,N) -- FS(2,J,N)

FS(IL,J,N) -- FS(IL-I,J,N)

25 FS(12,J,N) -- FS(2,J,N)

DO 26 I--2,1L

DW(I,J,N) -- FS(I+I,J,N) -2.*FS(I,J,N) +FS(I-I,J,N)

26 CONTINUE

IF (ISYM.LT.0) GO TO 27

DW(IL,J,N) = 0.

27 DW(1,J,N) = DW(IL,J,N)

DO 28 I=I,IL

FS(I,J,N) = DIS2(I,J)*FS(I,J,N) -DIS4(I,J)*DW(I,J,N)

28 CONTINUE

DO 3O I=2,1L

FW(I,J,N) = SFIL*FW(I,J,N) -FS(I,J,N) +FS(I-I,J,N)

30 CONTINUE

DO 38 J=3,JL

DO 38 I=2,IL

DP(I,J) ----ABS((P(I,J+I)-2.*P(I,J) +P(I,J-I))/

• (P(I,J+I) +2.*P(I,J) +P(I,J-I)))

38 CONTINUE

DO 4O I=2,IL

DP(I,1) = 0.

DP(I,2) = 0.

DP(I,JL+I) = 0.

DP(I,JL+2) = 0.

40 CONTINUE

DO 42 J---2,JL

142

DO 42 I=2,IL

EP(I,J) = MAX(DP(I,J-1),DP(I,J),DP(I,J+I),DP(I,J+2))

42 CONTINUE

EP(I,1) = EP(I,2)

IF (VIS0.LT.0.) GO TO 45

DO 44 J=I,JL

DO 44 I=2,IL

FIL = VOL(I,J+I)/DTL(I,J+I) +VOL(I,J)/DTL(I,J)

DIS2(I,J) = FIL*FIS2*EP(I,J)

DIS4(I,J) = FIL*FIS4

DIS4(I,J) = DIM(DIS4(I,J),DIS2(I,J))

44 CONTINUE

GO TO 47

45 DO 46 J=I,JL

DO 46 I=2,1L

FIL = KADJ(I,J+I) +RADJ(I,J)

DIS2(I,J) = FIL*FIS2*EP(I,J)

DIS4(I,J) = FIL*FIS4

DIS4(I,J) -- DIM(DIS4(I,J),DIS2(I,J))

46 CONTINUE

47 DO 48 N=I,4

DO 48 J=2,JL

DO 48 I=2,1L

FS(I,J,N) = W(I,J+I,N) -W(I,J,N)

48 CONTINUE

DO 5O J-----2,JL

DO 50 I=2,IL

FS(I,J,4) = FS(I,J,4) +P(I,J+I)-P(I,J)

5O CONTINUE

DO 60 N=l,4

143

DO 52 I--2,IL

FS(I,1,N) = FS(I,2,N)

FS(I,JL+I,N) = FS(I,JL,N)

52 CONTINUE

DO 54]=2,JL

DO 54 I--2,IL

DW(I,J,N) -- FS(I,J+I,N) -2.*FS(I,J,N) +FS(I,J-I,N)

54 CONTINUE

DO 56 I=2,1L

DW(I,I,N) -- 0.

56 CONTINUE

DO 58 J--I,JL

DO 58 I--2,IL

FS(I,J,N) -- DIS2(I,J)*FS(I,J,N) -DIS4(I,J)*DW(I,J,N)

58 CONTINUE

DO 6O J---2,JL

DO 6O I=2,1L

FW(I,J,N) = FW(I,J,N) -FS(I,J,N) ÷FS(I,J-I,N)

60 CONTINUE

STOP

END

1.4 EFLUX

SUBROUTINE EFLUX

PARAMETER(12=I94,J2----J2,1L--193, JL--33)

REAL DW(12,]2,4)

REAL FS(IL,J2,4)

REAL W(I2,J2,4),P(12,J2),X(12,J2,2)

DO 10 J--2,JL

144

10

2O

25

DO I0 I=I,IL

XY = X(I,J,I) -X(I,J-I,1)

yy = x(I,J,2) .x(ij-_,2)

PA = P(I+I,J) +P(I,J)

QSP = (yy*w(I+I,J,2).XY*W(I+IJ,3))/W(I+I,L1)

QSM = (YY*W(I,I,2).XY*W(I,J,3))/W(I,J,1)

FS(I,J,1) = QSP*W(I+I,:I,1) +QSM*W(I,J,1)

Fs(I,J,2) = qsP*w(I+lJ,2) +QSM*W(I,J,2) +YY*PA

FS(I,J,3) = QSP*W(I+I,J,3) +QSM*W(I,J,3)-XY*PA

FS(I,3,4) = QSP*(W(I+I,J,4) +P(I+I,J)) +QSM*(W(I,J,4) +P(I,J))

CONTINUE

DO 20 N=l,4

DO 2o J--2,JL

DO 20 I=2,IL

DW(I,J,N) = FS(I,J,N)-FS(I-1,J,N)

CONTINUE

DO 25 I=2,IL

XX ----X(I,l,1) -X(I-l,l,1)

YX ----X(I,1,2)-X(I-1,1,2)

PA = P(I,2) +P(I,1)

FS(I,I,1)-- 0.

FS(I,1,2) .=-YX*PA

FS(I,1,3) = XX*PA

FS(I,1,4) = 0.

CONTINUE

DO 30 J----2,JL

DO 30 I=2,1L

XX = X(Ij,1) -X(I-1J,1)

YX = X(I,J,2)-X(I-1,J,2)

PA = P(I,J+I) +P(I,J)

145

3O

4O

QSP --- (XX*W(I,J+I,3)-YX*W(I,J+I,2))/W(I,J+I,1)

QSM = (XX*W(I,J,3)-YX*W(I,J,2))/W(I,J,1)

FS(I,J,1) = QSP*W(I,J+I,1) +QSM*W(I,J,1)

FS(I,J,2) = QSP*W(I,J+I,2) +QSM*W(I,J,2) -YX*PA

FS(I,J,3) = QSP*W(I,J+I,3) +QSM*W(I,J,3) +XX*PA

FS(I,J,4) = QSP*(W(I,J+I,4) +P(I,J÷I)) +QSM*(W(I,J,4) +P(I,J))

CONTINUE

DO 40 N=l,4

DO 40 J=2,JL

DO 4O I=2,IL

DW(I,J,N) = DW(I,J,N) +FS(I,J,N)-FS(I,J-1,N)

CONTINUE

STOP

END

146

VITA

Manish Gupta receivedthe B.Tech. degree in Computer Science and Engineering from the

Indian Instituteof Technology,Delhi,in 1987. He receivedthe M.S. degree in Computer and

Information Sciencefrom the Ohio State University,Columbus, in 1988. He iscurrentlya

candidatefor the Ph.D. degreein Computer Scienceat the Universityof B]inoisat Urbana-

Champaign.

After completing his doctoral dissertation, Mr. Gupta will take up a position as a Research

StaffMember at the IBM T. J. Watson Research Center,Yorktown Heights,NY. His research

interestsincludeparallelprogramming environments and parallelcomputer architectures.

147

SECURITY CL_'SS_F<_IO_ OF _'HI_ _AG_:
i

REPORT

la. REPORT SECURITY CLASSIFICATION
Unclassi f led

2a. SECURITY CLASSIFICATION AUTHORITY

2b. OECLASSIFICATION I DOWNGRAOIf_G SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UIT.U-ENG-92-223 7 C1_IC

6a. NAME OF PERI_ORMING ORGANIZATION I

Coordinated Science Lab IUniversity of Illinois

6_ ADDRESS (Gty, State, and ZIPCod_)

ii01 W. Springfield Ave.

Urbana, IL 61801

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION Joint Services

Electronics Program
i

8c. ADDRESS (City, State, and ZlPCode)

800 N. Quincy St.

Arlington, VA 22217

92-19

I

DOCUMENTATION PAGE
i

lb. RESTRICTIVE MARKINGS

None

3, DISTRIBUTION/AVAILABlUTY OF REP()RT

Approved for public release;

distribution unlimited

' S. MONITORING ORGANIZATION REPORT NUMBER(S)

6b, OFFICE SYMBOL
(If applicable)

N/A
i

,b.OFF,CESYMBOL
(If applicable)

11. TITLE (Include Security Classification)

Automatic Data Partitioning

i,

12. PERSONAL AUTHOR(S) GUPTA, Manish

13a. TYPE OF REPORT 113b. TIME COVERED

Technical I FROM ,,
16. SUPPLEMENTARY NOTATION

7a. NAME OF MoNrrORING ORGANIZATION NASA

Office of Naval Research Nat. Sci. Found.
,l

7b. ADDRESS (C/ty, State, and ZIP Code)

800 N. Quincy St. Langley, VA

Arlington, VA 22217 Washington, DC

i, i |

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
NASA NAG 1-613

N00014- 90-J-1270 NSF MIP-86-57563

ii

10. SOURCE OF FUNDING NUMBERS

ELEMENT NO. . " NO. ACCESSION NO.

on Distributed Memory Multicomputers

TO

I i

114. DATE OF REPORT _eaCMon_,Da_ 15. PAGE COUNTI 92 September 25 150

17. COSATI CODES I 18. SUBJECT TERMS (Continue on rever_e if necessary and identify by block number)

FIELD I GROUP J SUB, GROUP I data partitioning, compilers, parallel computation,l I communication, load-balancing

I I

!9. ABS"r°_'T ,t" ,_ _, -,_ ;-,_,_ hv kdnck number)

Distributed-memory parallel computers are increasingly being used to provide high levels of performance for

scientific applications. Unfortunately, such machines are not very easy to program. A number of research efforts

seek to alleviate this problem by developing compilers that take over the task of generating communication. The

communication overheads and the extent of parallelism exploited in the resulting target program are determined

largely by the manner in which data is partitioned across different processors of the machine. Most of the compilers

provide no assistance to the programmer in the crucial task of determining a good data partitioning scheme.

This thesis presents a novel approach, the constraint-based approach, to the problem of automatic data pard-

cloning for numeric programs. In this approach, the compiler identifies some desirable requirements on the distribu-

tion of various arrays being referenced in each statement, based on performance considerations. These desirable

requirements are referred to as conswaints. For each conslraint, the compiler determines a quality measure that cap-

tures its importance with respect to the performance of the program. The quality measure is obtained through static

performance estimation, without actually generating the target data-parallel program with explicit communication.

Each data distr/bution decision is taken by combining all the relevant constraints. The compiler attempts to resolve

any conflicts between constraints such that the overall execution time of the parallel program is minimized.

i

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT J 21. ABSTRACT SECURITY CLASSIFICATION

I_IUNCLASSIFIEDAJNLIMITED I--IJ SAME AS RPT. I'-'] DTIC USER,S,J Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 122b. TELEPHONE (Include Area Code)]22c.OFFICE SYMBOL
I I
• III

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

UNCLASSIFIED

